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Abstract

Due to the recent availability of large complex networks, con-
siderable analysis has focused on understanding and charac-
terizing the properties of these networks. Scalable genera-
tive graph models focus on modeling distributions of graphs
that match real world network properties and scale to large
datasets. Much work has focused on modeling networks with
a power law degree distribution, clustering, and small diam-
eter. In network analysis, the assortativity statistic is defined
as the correlation between the degrees of linked nodes in the
network. The assortativity measure can distinguish between
types of networks—social networks commonly exhibit pos-
itive assortativity, in contrast to biological or technological
networks that are typically disassortative. Despite this, lit-
tle work has focused on scalable graph models that capture
assortativity in networks.
The contributions of our work are twofold. First, we prove
that an unbounded number of pairs of networks exist with the
same degree distribution and assortativity, yet different joint
degree distributions. Thus, assortativity as a network mea-
sure cannot distinguish between graphs with complex (non-
linear) dependence in their joint degree distributions. Moti-
vated by this finding, we introduce a generative graph model
that explicitly estimates and models the joint degree distri-
bution. Our Binned Chung Lu method accurately captures
both the joint degree distribution and assortativity, while still
matching characteristics such as the degree distribution and
clustering coefficients. Further, our method has subquadratic
learning and sampling methods that enable scaling to large,
real world networks. We evaluate performance compared to
other scalable graph models on six real world networks, in-
cluding a citation network with over 14 million edges.

1 Introduction
Networks are commonly used as a representation for un-
derstanding complex systems. For example, interactions of
physical systems (e.g., internet topology), biology (e.g., pro-
tein interactions), the Web (e.g., hyperlink structure) and
social networks (e.g., Facebook, email) can be represented
as networks. This has led to considerable interest in un-
derstanding these networks and constructing generative net-
work models that can capture a wide range of network be-
havior. Generally speaking, generative graph models are
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used to reason about observed graph structures by construct-
ing graphs that are, ideally, structurally similar to an input
graph. The methods use an input (observed) graph to esti-
mate parameters of the model, then the learned parameters
are used to generate a new network by drawing a sample
from the model. A variety of scalable generative network
models exist that capture common network structure such
as a power law degree distribution, small diameter and clus-
tering coefficients (Chung and Lu 2002; Kolda et al. 2013;
Leskovec et al. 2010; Pfeiffer III et al. 2012).

However, the assortativity of a network, or the tendency
for vertices to form connections with other vertices of sim-
ilar degree, is largely overlooked in these modeling ef-
forts. This is surprising in the sense that assortativity typ-
ically reflects the network type: social networks gener-
ally have positive assortativity, while biological and tech-
nological networks are generally disassortative (i.e., nega-
tive assortativity) (Stanton and Pinar 2011). Thus, the as-
sortativity in a network can provide significant insight into
the type of complex network observed, making it a popu-
lar statistic within social network analysis (Newman 2002;
Zhou et al. 2012).

Although assortativity is rarely directly modeled, it may
be produced as a byproduct of the modeling process. For
example, the Block Two-Level Erdos Renyi (BTER) model
(Kolda et al. 2013) groups clusters of vertices with simi-
lar degree together in such a way that the vertices within
a cluster have higher probability of linking to each other;
this representation produces networks with high clustering
and assortativity. However, this approach cannot produce
disassortative networks and moreover, the assortativity and
clustering cannot be varied independently, since they are tied
together in the process. Stanton and Pinar (2011) explicitly
model the joint degree distribution of a network, which gen-
eralizes the assortativity summary statistic. However, their
approach that directly models the entire joint degree distri-
bution is quadratic in the number of unique degrees in the
network, and their model cannot easily model other network
statistics (e.g., clustering).

In this work, we explore two aspects of this problem.
First, we formally discuss the relationship between the as-
sortativity of a network and its joint degree distribution.
Namely, we prove that assortativity alone cannot summarize
the joint degree distribution of a network: even networks



with identical degree distributions and assortativity can have
provably different joint degree distributions. Second, we de-
velop a Binned Chung Lu (BCL) generative graph model that
can learn assortativity patterns from an input graph and re-
flect them accurately in the sampled networks. Specifically,
we enhance the Chung Lu (CL) family of models (Chung
and Lu 2002; Pfeiffer III et al. 2012) to learn and incorpo-
rate a model of the joint degree distribution (JDD)—using
a coarse binning technique to summarize the JDD with a
small number of parameters and a statistical accept-reject
sampling process that augments the original CL model to
sample networks to match the the observed patterns in the
JDD. Unlike previous approaches, our BCL method can ac-
curately learn and model a wide range of joint degree distri-
butions (i.e., with both positive and negative assortativity).
Moreover, since our binning approach provably matches the
coarse JDD of the original network, it will also coarsely
preserve the assortativity. We also prove that our BCL
approach maintains the same expected degree distributions
as the baseline CL model and remains scalable (i.e., sub-
quadratic). Our contributions can be summarized as follows:

• Introduction of a coarse binning technique to capture the
joint degree distribution and assortativity found in a range
of real world networks.

• Proof that assortativity cannot distinguish joint degree
distributions, including a constructive proof for an infinite
class of graphs and an illustrative real-world example.

• Development of an accept-reject sampling process to effi-
ciently sample networks with a prescribed JDD and assor-
tativity, and a method to efficiently learn the correspond-
ing model parameters.

• Proofs that our BCL approach only incurs an extra sub-
quadratic learning and constant sampling cost.

• Proofs that our model and sampling algorithm preserves
the degree distribution and bin frequencies (i.e., approxi-
mate JDD).

Our BCL approach is general enough to use with any CL
model, but for this paper we implement and experiment with
two different baseline models: Fast Chung Lu with Binning
(FCLB), which extends the Fast Chung Lu model of (Kolda
et al. 2013), and Transitive Chung Lu with Binning (TCLB),
which extends the Transitive Chung Lu model of (Pfeiffer III
et al. 2012). We apply our methods to six network datasets
and show they are able to accurately capture assortativity
(significantly better than baseline methods) while maintain-
ing other graph properties of the original models. Addi-
tionally, to empirically demonstrate the scalability of the
models, we apply them to learn and sample from a Patents
dataset with 14 million edges.

In the following section, we outline the notation used, in-
troduce the Chung Lu model with its variants, and discuss
related work. Section 3 discusses assortativity in detail. Sec-
tion 4 outlines our BCL method and analyzes its character-
istics. In section 5, we compare BCL experimental to com-
peting models. We conclude in section 6.

2 Notation and Background
Let a graph G = 〈V,E〉 define a set of vertices or nodes V,
with a corresponding set of edges E ⊆ V ×V. We denote
the individual edges eij ∈ E where eij = (vi, vj). As the
graph is undirected, eij ∈ E if and only if eji ∈ E. Let Di

be the degree of node vi in the graph. Let M be the total
number of edges in the graph. Note that |E| = 2M since
each undirected edge corresponds to two elements in E. We
refer to the number of nodes of each degree as the degree
distribution of the graph.

Assortativity is a graph measure defined in (Newman
2002); formally, it is the correlation of degrees across
edges observed in the network. Define Tβ(eij) = Di and
Tε(eij) = Dj . Intuitively, {Tβ(e)|e ∈ E} is the distribu-
tion of degrees of the startpoints of edges in graph G, while
{Tε(e)|e ∈ E} is the distribution of degrees of the endpoints
in graph G. The assortativity is the Pearson correlation co-
efficient for these variables:

A =
cov({Tβ(e), Tε(e)|e ∈ E})√

var({Tβ(e)|e ∈ E}) ·
√
var({Tε(e)|e ∈ E})

(1)

Note that as the graph is undirected, the variances of the
random variables are equal; however, the covariance can
widely vary depending on the network structure (as we will
explore in detail in Section 3). A more in depth discussion
of assortativity can be found in (Newman 2002).

Chung-Lu Models
The Chung Lu models are a family of models such that the
expected degree of a vertex in a sampled network is equal to
the degree of the node in the original network (Chung and
Lu 2002). Chung Lu models define the marginal probability
of an edge to be proportional to the product of the endpoint
degrees normalized by a constant; i.e., (DiDj)/2M .

The structural assumptions of the model enable a fast
sampling method for sparse networks; although the model
defines a set of edge probabilities quadratic in the number of
vertices, efficient sampling algorithms exist that are linear in
the number of edges. This Fast Chung Lu (FCL) algorithm
(Pinar, Seshadhri, and Kolda 2011) generates a graph by re-
peatedly sampling proportional to their defined probabilities
and adds them to the network. Let G be an observed graph
and π be a normalized degree distribution (π(i) = Di/2M).
For M iterations, the FCL algorithm samples twice from π
to select an i, j pair and then adds the edge eij to the output
graph G′. FCL provably samples a given network’s degree
distribution in expectation. However, for most graphs, the
observed clustering coefficient is much higher than what is
generated by FCL.

In contrast, the Transitive Chung Lu (TCL) graph model
extends the simple FCL method to incorporate transitivity
into the sampling process (Pfeiffer III et al. 2012). In par-
ticular, TCL is a mixture model: with probability 1 − ρ it
samples an edge using FCL, but with probability ρ performs
a two hop random walk across the current network sample.
Starting at a vertex vi, once it takes two random steps it
places an edge between vi and the endpoint vj . Thus, TCL



incorporates transitivity into the network distribution by in-
serting triangles at a higher probability. This adjustment
provably maintains the degree distribution, but allows TCL
to accurately model the clustering of real world networks.
TCL has a simple and scalable learning algorithm, mean-
ing that it already can accurately learn p from large scale
networks. Further, TCL provably samples twice from the
corresponding marginal degree distributions, which will be
an important criteria for this work. Our method will be able
to be used with TCL, allowing us to model large scale net-
works’ degree distributions, clustering coefficients and joint
degree distributions.

Attributed Graph Models
Recently, the Attributed Graph Model (Pfeiffer III et al.
2014) was proposed as an extension to generative graph
models to allow for jointly modeling the dependencies be-
tween vertex attributes and network structure. This method
augments generative graph models to incorporate correlated
attributes while accurately maintaining patterns in the graph
structure. In that work, accept-reject sampling was used
to keep proposed FCL and TCL edges from being inserted
into a final network if they did not match the desired cor-
relations (with some probability). This representation prov-
ably samples from the set of edges conditioned on the ver-
tex attributes, and has scalable learning and sampling algo-
rithms for determining the acceptance probabilities given an
attributed network. In this work, we expand on this to prove
that higher order graph statistics (namely, the joint degree
distribution) can be efficiently learned and sampled while
maintaining lower order statistics (degree, clustering).

Accept-reject sampling is a framework used in statistics
(Liang, Liu, and Carrol 2010) that we will employ in our
BCL method. In particular, given a proposal distribution Q′
that is easy to sample from, we wish to use Q′ to sample
from a more complex target distribution Q. Using accept
reject sampling, we can repeatedly draw from Q′ but only
accept the sample some of the time. In particular, for each
value x that is drawn from Q′, we flip a Bernoulli coin with
probability proportional to Q(x)

Q′(x) and only accept the sample
x if the Bernoulli trial is a success. In particular the prob-
ability that x is sampled is A(x) = Q(x)

Q′(x)Z , where Z is a
constant such that ∀ x, A(x) ≤ 1 . Note that as samples
are drawn from Q′(x), the resulting distribution (after the
rejection process) is simply Q(x).

3 Assortativity in Graph Models
Assortativity is a measure of the correlation among the de-
grees of linked nodes in a network (Newman 2002). It is
a popular measure used to categorize and understand the
structure of a network, since different types of networks
have varying amounts of assortativity. For example, social
networks tend to have positive assortativity while biological
and technological networks tend to have negative assortativ-
ity (Stanton and Pinar 2011). See Table 1 for the assorta-
tivity (A) we observed across six networks of varying sizes
that we considered in this work, ranging from 0.18 to−0.29
(the details on each is discussed in Section 5).

Graph Nodes Edges A ÂTCL
Facebook Wall 444,829 1,014,542 -0.297 -0.0021
Purdue Email 54,076 880,693 -0.1161 -0.0092
Gnutella 36,682 88,328 -0.1034 0.0006
Epinions 75,865 385,418 0.0226 -0.0363
Rovira Email 1,133 5,451 0.0782 -0.0200
Patents 2,745,762 13,965,410 0.1813 0.0004

Figure 1: Network Statistics

(a) Purdue Email (b) Gnutella

Figure 2: Joint degree distribution representations B; k=10.

However, despite its popularity as a graph measure, as-
sortativity can fail to capture important dependencies in the
joint degree distribution. This is because it measures de-
gree correlation and thus focuses on linear relationships.
Consider the real-world examples depicted in Figures 2.a-
b, which illustrate the joint degree distributions of the Pur-
due email and Gnutella networks respectively. To (coarsely)
visualize the joint degree distribution, we divide the de-
grees of a graph G into k quantiles that we refer to as
Bk = [B1, B2, ..., Bk]. In Figure 2, we use k = 10. Let
b(D) be a function that returns the set membership in Bk

for a given degree D. We can now construct a k × k matrix
B to represent the joint degree distribution, where each cell
i, j counts the number of edges between nodes with degrees
in Bi and those with degree Bj . In other words, an edge eij
would be counted in cell [b(Di), b(Dj)]. When visualizing
B, we use a gray scale intensity plot to indicate the number
of edges in each cell (i.e., a cell without any edges will be
colored white and a cell with the largest amount of edges
will be close to black).

Assuming the axes of B are ordered by increasing degree,
as we do above, these plots show information related to as-
sortativity. If the darker boxes form a line with a positive
slope, the graph will have positive assortativity. In contrast,
if the dark boxes form a line with a negative slope, the graph
will have negative assortativity. More precisely, the binned
plots are a histogram approximation to the full joint degree
distribution; they graphically represent the dependencies be-
tween the various degrees in the network.

The Purdue Email and Gnutella datasets have similar as-
sortativity values of −0.1161 and −0.1034, respectively.
However, their joint degree distributions are quite different
as can be seen in Figures 2.a-b. These examples illustrate ev-
idence in support our claim that the single dimensional mea-
sure of assortativity does not fully capture the dependencies
we observe in joint degree distributions in real networks.

To expand on this individual example, we prove in Theo-



D A B

1 8910 8910
5 1782 1782
10 176 176

(a) Degrees (b) Graph A (c) Graph B

Figure 3: (a) Degree distribution; (b-c) Joint degree distri-
bution representations B; k=3.

rem 1 that there are infinitely many pairs of graphs with the
same assortativity and degree distribution, but maximally
different joint degree distributions (Proof in Appendix).

Theorem 1. Let Aw, Bw be two networks comprised of
graphlets, where w parameterizes the size and counts of
the graphlets. There exist an infinite set of pairs of graphs
{Aw, Bw} such that for any w ≥ 2, Aw and Bw have the
same degree distribution, the same assortativity, but infinite
KL-Divergence between their joint degree distributions.

As an example of a pair of graphs that are covered by
Thm. 1, we construct two Graphs A and B with w = 5. The
graphs are composed of disconnected subgraphs that are ei-
ther stars or cliques. Graph A consists of 1782 stars of size
5 and 16 cliques of size 11. Graph B consists of 176 stars
of size 10, 297 cliques of size 6, and 3575 cliques of size 2.
Both of these graphs have the exact same degree distribution
(see Table 3.a) and the same assortativity: A = 9

187 . How-
ever, Figures 3.b-c show that the two graphs have very dif-
ferent joint degree distributions, despite their identical assor-
tativity and degree distributions. Further, as the two joint de-
gree distributions have disjoint support, the KL-Divergence
between them is infinite. Next, we propose a novel approach
to modeling assortativity in networks that considers depen-
dencies in the full joint distribution.

4 Binning Chung Lu
Most generative graph models are not able to reproduce as-
sortativity, and even fewer model negative assortativity. For
example, although Chung Lu (CL) models preserve other
network statistics, the processes produce no correlation be-
tween the degrees of edge endpoints. This results in network
samples with near zero assortativity (see Figure 1). We now
propose the Binning Chung Lu (BCL) method to model as-
sortativity in networks.

Generally speaking, our BCL methods use an existing
edge-by-edge generative graph model (such as FCL or TCL)
to propose possible edges from their respective distributions.
BCL then filters, or conditionally accepts, a subset of the
proposed edges into a final network sample. By estimating
the correct acceptance probabilities, the final accepted edge
samples are provably from the desired joint degree distri-
bution. Our approach is a form of accept reject sampling
and general enough to augment any Chung Lu model. In
this paper, we implement our approach using both FCL and
TCL—referring to them as FCLB and TCLB respectively.

More specifically, BCL expands on the binning visualiza-
tion introduced in the previous section. First, BCL creates
a “degree vector”, where the pair (Di, vi) is inserted in the
vector Di times. We then sort this vector by the degrees
of the vertices, followed by dividing the vector into k equal
segments, or quantiles. These quantiles correspond to the
bins discussed in the visualization from the previous sec-
tion: every vertex vi is assigned to its corresponding bin,
or quantile, as determined by the vertex’s degree Di. Simi-
larly, the vertices contained within a bin Bp are the vertices
with degrees in the pth quantile of the degree vector. Then
the k × k matrix B represents the count of the number of
observed edges eij that fall in a particular cell indexed by
[b(Di), b(Dj)].

Given B, which is our coarse, binned representation of
the joint degree distribution, we can outline an accept-reject
sampling method to extend a given FCL or TCL model. For-
mally, the original CL model is a proposal distribution Q′:
FCL and TCL are chosen due to their scalable sampling pro-
cesses. We define the target distribution Q to be a network
distribution with the same binned joint degree distribution as
the input graph.

To implement BCL, we first compute the bin representa-
tion Bk and associated B from an input graph G. We then
generate a graph G′ from the CL model, using G as input,
and compute the resulting joint degree distribution B′ from
G′ (using Bk). With B and B′, we estimate the acceptance
probabilities A:

R(m,n) =
#{eij ∈ E | b(D(i)) = m ∧ b(D(j)) = n}
#{eij ∈ E′ | b(D(i)) = m ∧ b(D(j)) = n}

=
Bmn
B′mn

A(m,n) =
R(m,n)

maxmn R(m,n)
=
R(m,n)

Rmax

We refer to the sampling process of the CL model as
π(Θ). Thus, we sample two nodes i, j from π and after each
sample, determine whether to accept or reject the edge eij
depending on the corresponding bin’s acceptance probabil-
ity. We repeat this process until we have sampled as many
edges as the original graph.

This process is described in Algorithm 1. G is the orig-
inal graph, π is the CL model, and Θ is the parameters for
the CL model. Note that we must first generate a prelimi-
nary graph using the CL model so that we can compute the
acceptance probabilities. For a proposed edge eij (line 7),
A(b(Di), b(Dj)) returns the acceptance probability from the
appropriate cell of B (Line 8). Lastly, lines 9-12 determine
whether to accept the proposed edge into the final set.

In the next subsection, we prove that our BCL approach
maintains the original degree distributions as guaranteed by
FCL and TCL, while also modeling the true joint degree dis-
tribution of the original network and (by extension) the as-
sortativity.

Analysis of Binning Chung Lu Models
In this section, we prove the following key theorems:
• Theorem 2: In expectation, the Binning Chung Lu mod-

els provably sample from the original coarse JDD.



Algorithm 1 Binning Chung Lu Method(G, π,Θ, k)
1: Compute k × k bin frequencies B fromG

2: GenerateG′ from π, usingG and Θ

3: Compute k × k bin frequencies B′ fromG′

4: ComputeA(m,n) from B and B′

5: Create empty graphGBCL

6: while |EBCL| ≤ |E| do
7: < i, j >= edge sampled using π(Θ)

8: a = A(b(Di), b(Dj))

9: r = bernoulli sample(a)

10: if r = 1 then
11: EBCL = EBCL ∪ eij
12: end if
13: end while
14: return(GBCL)

• Theorem 3: The expected degree of a node sampled us-
ing Binning Chung Lu models equals the original degree.
These proofs exploit a key relationship between the

Chung Lu graph models and the defined quantiles; namely,
the Chung Lu graph models sample uniformly from the
coarse JDD representation. In the following Lemma, we use
this to derive the probability a given sample from a Chung
Lu model is accepted by Binning Chung Lu. This is subse-
quently used to prove both Theorem 2 and 3.
Lemma 1. In BCL, if the edges are sampled from a Chung
Lu model, the marginal probability that an edge sample is
accepted is 1

Rmax
.

Proof. First, the acceptance probability is equivalent to
marginalizing over all the acceptance probabilities for each
eij . Let k1, k2 indicate a particular bin index. Then:

P (accepted) =
∑
eij

P (eij)P (accepted|eij)

=
∑
eij

DiDj

(2M)(2M)

∑
k1,k2

I[eij ∈ R(k1, k2)] · R(k1, k2)

Rmax

=
1

Rmax

∑
k1,k2

∑
eij∈Bin(k1,k2)

DiDj

(2M)(2M)
R(k1, k2)

=
1

Rmax

∑
k1,k2

∑
eij∈Bin(k1,k2)

DiDj

(2M)(2M)

Bk1k2
B′k1k2

The edge probabilities can be further split by their respective
quantiles Qu(k1), Qu(k2), i.e., Qu(k)={vi|b(Di)=Bk}:

P (accepted) =
1

Rmax

∑
k1

∑
k2

 ∑
i∈Qu(k1)

Di

2M

 ∑
j∈Qu(k2)

Dj

2M

 Bk1k2
B′k1k2

=
1

Rmax

1

k

1

k

∑
k1

∑
k2

Bk1k2
B′k1k2

As Chung Lu models have uniform bin distribution ∀ k1, k2,
we have B′k1k2 = 2M

k2 . Thus:

P (accepted) =
1

Rmax

1

k

1

k

k2

2M

∑
k1

∑
k2

Bk1,k2

As the sum over all the bin frequencies is 2M , we simplify
the above to recover P (accepted) = 1

Rmax
.

Using the above lemma, we show that although the pro-
posal distribution (FCL or TCL) proposes edges from a uni-
form joint degree distribution, the edges accepted into the
network sample provably model the joint degree distribution
of the original network.

Theorem 2. For a graph GBCL generated by BCL, the ex-
pected edge frequency in bin BBCLk1k2

is equal to the frequency
in bin Bk1k2 , from the original input graph G.

Proof. The probability of accepting an edge in a bin is:

P (edge in BBCLk1k2
) =

∑
eij∈BBCLk1k2

P (eij sampled)A(k1, k2)

=
∑

eij∈BBCLk1k2

2
DiDj

(2M)(2M)

R(k1, k2)

Rmax

Summing over quantiles:

P (edge in BBCLk1k2
)

=
2

Rmax

 ∑
i∈Qu(k1)

Di

2M

 ∑
j∈Qu(k2)

Dj

2M

 Bk1k2
B′k1k2

Chung Lu models have uniform bin distribution so B′k1k2 =
2M
k2 and further by definition, the sum of degrees are uni-

formly distribution among the k quantiles:

P (edge in BBCLk1k2
) =

2Bk1,k2
Rmax

1

k

1

k

k2

2M

=
Bk1,k2
RmaxM

(2)

The overall acceptance probability is 1
Rmax

from Lemma
1, meaning the expected number of draws to insert a sin-
gle edge is Rmax. Therefore, the expected number of to-
tal draws from the underlying CL model is MRmax. Thus,
combined with Equation 2, the expected number of edges in
BBCLk1,k2

is equal to Bk1,k2 .

Thus, the resulting graph samples will have edges drawn
from the coarse joint degree distribution representation that
parameterizes the original network G. By extension, the
assortativity (which is simply a statistic of the joint degree
distribution) of the generated networks GBCL will approxi-
mately match that of G. Additionally, our BCL method pre-
serves the modeled expected degree distribution.

Theorem 3. For a graph GBCL generated by BCL, the ex-
pected degree of a node i is Di, the degree of the node in the
original graph G.

Proof. First, we derive the probability of accepting a sam-
pled edge incident to node i (within bin b(Di)) for a given
node i:



P (edge incident to i accepted)

=
∑
j

P (eij)P (accepted|eij)

=
∑

k′∈[1..k]

∑
j∈Qu(k′)

P (eij)A(b(Di), k
′
)

=
∑

k′∈[1..k]

∑
j∈Qu(k′)

2
DiDj

(2M)(2M)

R(b(Di), k
′)

Rmax

Summing over the quantile Bk′ of node j:

P (edge incident to i accepted)

=
Di

RmaxM

∑
k′∈[1..k]

 ∑
j∈Qu(k′)

Dj

2M

 Bb(Di),k′
B′
b(Di),k

′

=
Di

RmaxM

1

k

k2

2M

∑
k′∈[1..k]

Bb(Di),k′

Because of the definition of quantiles, the marginal bin fre-
quencies are uniform: 2M

k

P (edge incident to i accepted) =
Di

RmaxM

1

k

k2

2M

2M

k

=
Di

RmaxM

As in the proof of Theorem 2, the expected number of total
draws from the underlying CL model is is MRmax. There-
fore, the expected number of edges incident to node i, and
thus the degree of node i, is Di.

Runtime Complexity

For a given CL algorithm, let the sampling complexity be
O(M · λ), where λ is strictly sublinear. For a given k num-
ber of bins, the learning step must first (a) construct the de-
gree vector and (b) sort the degree vector. Next, it must (c)
construct the k2 bins, (d) sample a network from the model,
and (e) insert all the edges into the appropriate bin. Thus,
the total cost is O(M logM + k2 + M · λ). If the chosen
model is scalable and k is a constant, the total learning time
is subquadratic. To sample a network, each accept-reject
lookup costs O(1), and we have a geometric acceptance dis-
tribution. Since the mean of a geometric distribution is a
constant, the expected total sampling cost remainsO(M ·λ).

5 Experiments
Experiments were performed to assess the algorithms and
to assess how varying the amount of binning effects error
rates. To empirically evaluate the models, we learned model
parameters from real-world graphs and then generated new
graphs using those parameters. We then compared the net-
work statistics of the generated graphs with those of the orig-
inal networks.

Datasets
We used six different datasets to evaluate our experimental
results. Their node and edge counts can be found in Fig-
ure 1, with all networks being cast into an undirected and
unweighted representation.

First, we study two email datasets: a small publicly avail-
able dataset from an email network of students at University
Rovira i Virgili in Tarragona (RoviraEmail) (Guimer et al.
2003), and a large email network from Purdue University
(Email). Each dataset is a collection of SMTP logs repre-
senting when users send an email to one another, with every
email sent representing a link between instances.

The next two networks we study are examples of social
networks, with a collection of Facebook wall postings (Face-
bookWall) and the publicly available Epinions trust network
(Epinions) (Richardson, Agrawal, and Domingos 2003).

Another dataset is Gnutella, a publicly available
Peer2Peer network where users are attempting to find seeds
for file sharing (Ripeanu, Iamnitchi, and Foster 2002). In a
Peer2Peer network, a user queries its peers to determine if
they can seed a file. If not, the peer refers them to other users
who might have a file. This repeats until a seed is found.

Lastly, we study a publicly available citation network
of US Patents (Leskovec, Kleinberg, and Faloutsos 2005).
Nodes in this network are published patents, while edges
indicate where one patent cited the other. This is a large net-
work, with over 10 million citations between 2 million edges
and demonstrates the scalability of our proposed methods.

Models Compared
We compare our proposed methods against three baselines:
FCL, TCL and the Block Two-Level Erdos-Renyi (BTER)
model1 (Kolda et al. 2013). The BTER model groups ver-
tices with similar degrees into blocks with high probability,
resulting in networks with a high amount of clustering and
positive assortativity. As a result, BTER cannot model net-
works where the assortativity is independent of the cluster-
ing, meaning augmenting BTER with our Binning Chung
Lu method would interfere with the clustering that BTER
models. In contrast, the degree and clustering statistics of
FCL and TCL are independent from the assortativity. Thus,
we implement our augmentation to both the FCL and TCL
models, creating the FCLB and TCLB methods. We demon-
strate how, in particular, TCLB can jointly capture the de-
gree distribution, clustering, joint degree distributions and
assortativity, in contrast to any of the baseline methods.

Methodology
We ran experiments on six real world datasets using five dif-
ferent algorithms. For evaluation, we compared the graphs
generated by the algorithms using the complementary cu-
mulative distribution function for both the degree distribu-
tion and the distribution of local clustering coefficients. We
also compared the assortativity coefficient and the joint de-
gree distributions visually. To compare the distributions, we
choose a binning number of 10 bins and plot the original and
generated graphs’ joint degree distribution.

1Downloaded from www.sandia.gov/ tgkolda/feastpack
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Figure 4: Degree Distributions

Results
To begin, Figure 4 demonstrates that all the compared meth-
ods closely model the degree distributions of the datasets.
In the next figure, Figure 5, we demonstrate that only TCL,
TCLB and BTER preserve the local clustering coefficients
found in the original network. As expected, the FCL method
fails to model the clustering found in the datasets; this is
reflected in FCLB, which only captures the assortativity of
the FCL model provided to it. Thus, the binning models
(FCLB and TCLB) reflect the underlying proposal distribu-
tions (FCL and TCL) and preserve the corresponding statis-
tics that each model .

In Figure 6, we plot the joint degree distributions for all
six of our datasets. FCLB and TCLB are able to capture
not only the correct assortativity coefficient, but also accu-
rately model the joint degree distribution. In contrast, BTER
creates a joint degree distribution with a linear degree corre-
lation.

Correspondingly, we present the assortativity of each of
the models for each of the datasets in Figure 7.a. In par-
ticular, the non-binning Chung Lu models have assortativ-
ity very close to zero. However, FCLB and TCLB closely
match the assortativity for all datasets. Although BTER ex-
hibits positive assortativity, it doesn’t model the assortativity
found in the corresponding real world networks.

In order to test the impact of the 10 bin selection, we com-
pare error rates for FCLB and TCLB on the Gnutella dataset
as we vary the bin size (Figure 7.b-c) The error we use is
the skew-divergence to measure the difference between the
model distribution and the original data distribution (Lee
2001). The skew-divergence is used as it has a slight mixture
between the two distributions, meaning that there is always
support between the measures (unlike KL Divergence). We
generate 25 different graphs and take the mean and standard
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Figure 5: Clustering Coefficients

deviations (bars) of error rates at various points, measuring
the error for the degree distribution, joint degree distribu-
tion and clustering coefficients. In addition to the binning
methods (solid lines, plotted by means), we give the origi-
nal models’ values for each statistic (dashed lines). First, we
see that the degree distribution for the binning models are
not significantly different from the original models until a
relatively large number of bins are used (50 or more). How-
ever, the joint degree distribution quickly improves over the
baseline models, with considerably less error when only 5
bins are used. Additionally, the clustering coefficient distri-
bution is not significantly different from the original model.
Hence, our models are largely stable over a variety of bin-
ning choices, maintaining the original degree distribution
and clustering of a given model and additionally modeling
joint degree distribution.

Lastly, we plot the rejection rates for the binning models,
as we vary the number of bins used, in Figure 7.d. Note that
the original Chung Lu models sample from the edge distri-
bution M times. Let αrejection be the rejection rate. Since
the acceptance of an edge has a geometric distribution, we
can conclude that the binning version samples from the edge
distribution M

1−αrejection on average. Thus, even with large
amounts of rejection for the large bins (100), the binned ver-
sion is only 5x longer than the original model. For smaller
bin sizes, which also accurately model the joint degree dis-
tribution, the rejection rate is considerably less (around 2x
rejection rate). Thus, with a constant factor of extra samples
we are able to accurately model the joint degree distribu-
tion, while maintaining the degree distribution and cluster-
ing. Empirically, the Patents dataset containing 14 million
edges ran in under 20 minutes with only 10 bins.
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Figure 7: (a) shows assortativity for the datasets and algorithms. The effect of varying bin sizes for (b) FCLB and (c) TCLB.
(d) illustrates the rejection rates for each.

6 Conclusions
In this work, we presented the BCL extension to the Chung
Lu family of models. We began with a discussion of the as-
sortativity statistic commonly used in social network analy-
sis, and demonstrated that existing random network models
are unable to model it. We next discussed that the assortativ-
ity is only a linear summary statistic of the joint degree dis-
tribution, demonstrating that real world networks with simi-
lar assortativity coefficients but largely different joint degree
distributions exist. Further, we proved that there are an infi-
nite number of graphs with the same degree distribution and
assortativity, yet different joint degree distributions. This
motivated our solution: the coarse binning technique to cap-
ture the joint degree distribution of a network. Using accept
reject sampling, this binning method can pair with any ex-
isting Chung Lu model to preserve the assortativity, degree
distribution and clustering, without increasing the runtime
complexity.

We implemented our method with both the FCL and TCL
models, with the corresponding TCLB capturing the degree
distribution, clustering, assortativity and joint degree distri-

bution better than any baselines. We tested this implemen-
tation on six large, real world networks, including a Patents
dataset with nearly 14 million edges. Our BCL representa-
tion empirically preserves an underlying model’s statistics
while incorporating the true joint degree distribution. Fu-
ture work includes expanding our methods to scalably model
additional graph statistics, all while provably maintaining
guarantees of current network models.
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Appendix
This section provides the detailed proof for Theorem 1.The
proof states there are infinitely many pairs of graphs (name
A and B) with the following three conditions:

• Lemma 2: Graphs A,B have equal degree distributions.



• Lemma 3: Graphs A and B have the same assortativity.
• Proposition 1: The joint degree distributions of graphs A

and B have infinite KL divergence.
Graphs A and B are defined in terms of a positive integer

w, where w ≥ 2. In particular, A and B are defined solely
in terms of stars and cliques that relate to w:

Graph A Graph B
NS w-stars N2s 2w-stars

N2c (2w+1)-cliques NC (w+1)-cliques
Np Pairs

In particular, given the same w ≥ 2, the graphs A and B
have different joint degree distributions.
Proposition 1. For anyw ≥ 2, the joint degree distributions
of Graphs A and B have infinite KL-Divergence.

Proof. Note that Graph A consists solely of links between
nodes of degree 1 to w, and 2w to 2w. In contrast, Graph B
consists solely of links between nodes of degree 2w-1, w to
w, and 1 to 1. These sets are disjoint, meaning neither graph
has full (or any) support of the opposite graph. Thus, the
joint degree distributions have infinite KL-Divergence.

Next, we define values for the parameters of A and B
that result in the same degree distributions between the two
networks (computation omitted for space).
Lemma 2. For anyw ≥ 2, ifNS = 2(w+1)(2w+1)(2w−
1)2 andN2s = (w+1)(2w+1)(w−1)2 andNC = 2(2w+
1)(2w−1)2 andN2c = (w+1)(w−1)2 andNp = w2(w+
1)(2w + 1)(3w − 2), then graphs A and B have identical
degree distributions.

For an undirected graph, the first moments of these two
distributions are identical.
Definition 1. For a bidirectional graph G, let:

µG =

∑
e∈E T∗(e)

|E|
=

∑
eij∈E

Di

|E|

σ
2
G =

∑
e∈E(T∗(e)− µG)2

|E|
=

∑
eij∈E

(Di − µG)2

|E|
where ∗ ∈ {β, ε} This occurs due to the symmetry of a bidi-
rectional network: for every eij ∈ E there is a correspond-
ing eji ∈ E.

Lastly, although the variances of Tβ(e) and Tε(e) are
equal, the covariance between them is not equal to the vari-
ance. We use this to define the assortativity.
Definition 2. The assortativity of a network is defined as the
covariance of two variables divided by the standard devia-
tion of each. Thus,

AG =
cov({Tβ(e), Tε(e)|e ∈ E})

σG · σG
=

∑
eij∈E

(Di − µG)(Dj − µG)

σ2
G

With these defined, the next lemma proves values for
graphs A and B are equal (computation omitted for space).
Lemma 3. For any w ≥ 2, if NS , N2s, NC , N2c, and Np
are defined as in Lemma 2, then graphs A and B have iden-
tical assortativity values.

We now combine Lemmas 1 and 2 (matching Degree
Distribution and Assorativity) with Proposition 1 (infinite
KL divergence in the joint degree distribution).

Theorem 1. Let Aw, Bw be two networks comprised of
graphlets, where w parameterizes the size and counts of
the graphlets. There exist an infinite set of pairs of graphs
{Aw, Bw} such that for any w ≥ 2, Aw and Bw have the
same degree distribution, the same assortativity, but infinite
KL-Divergence between their joint degree distributions.

Proof. We construct {Aw, Bw} by using the equations from
Lemma 2 and w to find NS , N2s, NC , N2c, and Np. The
value of these five constants can be used to construct two
graphs, Aw and Bw, as in Proposition 1.

By Lemma 2, Aw and Bw have the same degree distri-
bution. By Lemma 3, Aw and Bw have the same assorta-
tivity. Finally, by Proposition 1, Aw and Bw have infinite
KL-divergence.
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