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ABSTRACT
Online social networks have become ubiquitous to today’s
society and the study of data from these networks has im-
proved our understanding of the processes by which relation-
ships form. Research in statistical relational learning focuses
on methods to exploit correlations among the attributes of
linked nodes to predict user characteristics with greater ac-
curacy. Concurrently, research on generative graph models
has primarily focused on modeling network structure with-
out attributes, producing several models that are able to
replicate structural characteristics of networks such as power
law degree distributions or community structure. However,
there has been little work on how to generate networks with
real-world structural properties and correlated attributes.

In this work, we present the Attributed Graph Model
(AGM) framework to jointly model network structure and
vertex attributes. Our framework learns the attribute cor-
relations in the observed network and exploits a genera-
tive graph model, such as the Kronecker Product Graph
Model (KPGM) [11] and Chung Lu Graph Model (CL) [2],
to compute structural edge probabilities. AGM then com-
bines the attribute correlations with the structural proba-
bilities to sample networks conditioned on attribute values,
while keeping the expected edge probabilities and degrees
of the input graph model. We outline an efficient method
for estimating the parameters of AGM, as well as a sam-
pling method based on Accept-Reject sampling to generate
edges with correlated attributes. We demonstrate the effi-
ciency and accuracy of our AGM framework on two large
real-world networks, showing that AGM scales to networks
with hundreds of thousands of vertices, as well as having
high attribute correlation.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining
General Terms: Algorithms, theory, rejection sampling
Keywords: Network analysis, network modeling, attributed
graph models.
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1. INTRODUCTION
The growth of the internet has created large scale col-

lections of networked data, with online services encouraging
social interaction (Facebook, Twitter) and fostering business
communication (Email, LinkedIn). By studying the struc-
tures and attributes of large scale relational data, researchers
have discovered that data often exhibits correlation among
the attributes of linked individuals. Further work has con-
sidered the root cause of this correlation and distinguished
between social influence, which is the tendency for linked in-
dividuals to adopt the characteristics of their neighbors, and
homophily, where links are created based on the attribute
similarities of the individuals [10, 15, 22]. Relational ma-
chine learning takes advantage of correlation in networks to
jointly predict class labels and has been applied to a wide va-
riety of domains to improve prediction accuracy, from web-
pages and online social networks to genetics and securities
regulators [24, 17, 4].

Concurrently, research on generative graph models has fo-
cused on statistical processes to generate distributions of
graphs, with the goal of understanding how commonly oc-
curring structural features arise, such as power law degree
distributions, clustering, or community structure [2, 11, 19,
8, 18]. Models of processes to construct large complex net-
works can be used to further tailor and improve predictive
algorithms, detect anomalies in networks, and test algorithm
performance to future network structure. Additionally, since
access to large network data for research is often restricted
due to security and privacy concerns, accurate generative
graph models can be used to produce realistic, yet anony-
mous, synthetic networks for public study.

While the modeling of attribute correlations across net-
work links has found widespread acceptance in relational
machine learning, the converse—modeling network structure
given observed vertex attributes—has generally not been
considered by researchers focusing on generative graph mod-
els. The majority of research in this area has focused on
modeling graphs without vertex attributes (e.g., [2, 11, 19,
18]), in spite of the fact that many social networks such
as Facebook, LinkedIn, and Twitter have associated ver-
tex attributes (e.g., users’ interests and affiliations). No-
table exceptions which can (potentially) include vertex at-
tributes are the Exponential Random Graph (ERG) Model
[20], the Multiplicative Attribute Graph (MAG) Model [7],
Latent Space (LS) approaches [6], and Mixed Membership
Stochastic Blockmodels (SBM) [1]. The ERG model is flex-
ible enough to include a wide range of attribute and struc-
tural information, but this flexibility leads to computational



costs which prohibit its application to networks with greater
than a few thousand vertices. The MAG model aims to ex-
ploit vertex attributes to better model the structural fea-
tures found in real world networks. However, this recent
work has mainly focused on marginalizing over a set of la-
tent (i.e., hidden) vertex attributes, rather than explicitly
learning the model from observed vertex attributes. This is
similar to LS and SBM approaches, which do not approach
the problem in terms of structural characteristics such as a
power law degree distribution and small diameter, but rather
in terms of using latent variables to discover and model com-
munities. Moreover, ERGM and MAG are largely used for
descriptive analysis, where the structure of a large graph is
summarized by a small set of statistics for hypothesis test-
ing. While the ERGM representation can improve our un-
derstanding of the structure of a network, it generally makes
sampling more difficult [5].

Motivating Example: Consider the following scenario that
we will refer to throughout this work. Two users in a net-
work (Alice and Bob) have a large number of common friends,
which in turn implies a high likelihood that they will become
friends. At some point in time, Alice and Bob might meet
through a mutual friend. However, if we examine the in-
trinsic attributes of Alice and Bob, we may find that Alice
is conservative while Bob is liberal. Although this does not
prevent the two from becoming friends, political views typ-
ically correlate across edges in a network. Thus, a model
which represents the probability that an edge will form be-
tween Alice and Bob should consider both their network
structure and their attributes.

Modeling Structure and Correlated Attributes:
We introduce the Attributed Graph Model (AGM) to model
joint distributions of edges conditioned on vertex attributes.
AGM utilizes an underlying structural graph model to sam-
ple possible edges (e.g., the likelihood that Alice and Bob
will meet due to their structural properties). However, in
contrast to prior work on generative graph models, AGM
also models the attribute correlations in a network. It then
uses these correlations to estimate the conditional probabil-
ity a proposed edge should be included in the network given
the attributes of the corresponding vertices.

The AGM framework is based on Accept-Reject sampling
from computational statistics [13], where a proposal distri-
bution is used to draw a sample that is either accepted or re-
jected (probabilistically) depending on the characteristics of
the sample. Accepted samples are samples from the true dis-
tribution, with acceptance probabilities (loosely) reflecting
the distance between the proposing and the true distribu-
tion. In AGM, a proposed edge is drawn from an underlying
structural graph model (e.g., Alice and Bob meet at a party).
Then the possible edge is accepted into the network with
some probability, depending on the characteristics of the in-
cident vertices (e.g., Alice and Bob’s political views). The
resulting sample of accepted edges is equivalent to a draw
from a distribution that has both the desired network struc-
ture and attribute correlation. More formally, AGM models
and samples from the joint distribution of edges given vertex
attributes—which could be interpreted as an explicit model
of homophily.

The AGM framework is general enough to use in conjunc-
tion with many probabilistic generative graph models and
does not sacrifice important characteristics of a given struc-

tural model. In particular, we prove AGM’s expected de-
gree distribution equals the degree distribution of the input
generative graph model. We implement versions of AGM
based on some of the most well known scalable generative
models, i.e., Kronecker Product Graph Model (KPGM) [11],
Chung Lu (CL) [2], and Transitive Chung Lu (TCL) [18].
As part of our analysis, we show that the KPGM and CL
models can be grouped into a single framework, which AGM
extends. Moreover, we outline learning and sampling al-
gorithms for AGM that are efficient provided the selected
generative graph model is scalable.

The specific contributions of our work include:

• Introduction of a novel framework (AGM) for mod-
eling and sampling networks where vertex attributes
are correlated across edges. AGM exploits generative
graph models to enable efficient sampling and model-
ing of a network’s structural characteristics.

• Efficient sampling and methods for AGM which scale
to large networks of hundreds of thousands of vertices
and multiple attribute correlations.

• Proofs that the AGM model preserves the degree dis-
tribution in expectation, in addition to accurately mod-
eling the correlations of vertex attributes.

• Demonstration that AGM can be paired with a number
of generative graph models to sample networks with
correlation while retaining the structural characteris-
tics of the input graph model.

We begin with a brief review of generative graph models
and other related work in Section 2, with further notation
and background as needed in Section 3. We then outline our
AGM framework in Section 4 and discuss analytical proper-
ties in Section 5. We demonstrate the abilities of AGM in
Section 6, including generating a network with over 500,000
vertices and multiple correlated attributes. We conclude in
Section 7.

2. RELATED WORK
Our work connects several prominent areas of the social

network literature. First, a primary concern in social net-
work analysis is the process which generates edges in the
network. The first generative graph model, the Erdős Rényi
graph model, generated graphs with equal probability of ev-
ery edge occurring [3]. However, the structural features of
this model failed to match those found in many real world
networks, leading to a variety of approaches attempting to
match the power law degree distribution of the network ([20,
11, 19, 18]). The majority of approaches attempt to model
structural features, ignoring the vertex attributes.

One notable exception to this is the exponential random
graph (ERG) model (an extension to the Erdős Rényi model),
which models a set of features as a distribution in the ex-
ponential family, where the functions are flexible enough to
incorporate attributed vertices. The computational cost of
this method is at least quadratic in terms of the number
of vertices, limiting its applicability in large scale networks.
ERG models also currently suffer from several other issues,
including degeneracy [5] as well as being inconsistent under
anything but dyadic independence [21]. Another notable ex-
ception is the multiplicative attributed graph (MAG) model,



which considers vertex attributes in order to match rela-
tional structure. While MAG primarily marginalizes over
latent attributes to capture network features, we modify
MAG to incorporate observed variables, which allows com-
parison. Both ERG and MAG are generally utilized in a
more descriptive manner, providing insight into the struc-
tural characteristics of the network rather than for generat-
ing accurate samples. Scalable models for sampling, such as
KPGM [11], CL [2], TCL [18] and Block Two-Level Erdős
Rényi [8], currently only consider the structural character-
istics of networks, omitting any vertex attributes. Latent
Space [6] and Stochastic Blockmodels [1] generally approach
the problem of clustering vertices without considering net-
work statistics such as degree distributions and diameter.

Although generative graph models which are conditioned
on vertex attributes are relatively rare, finding such behavior
in real-world networks is not. Individuals in social networks
tend to create links with others who have a common inter-
est (i.e., homophily [15]), which leads to networks where the
existence of edges is dependent on the attributes of their
endpoints [10, 12]. Thus, modeling of the correlation of at-
tributes in generative models leads to better understanding
of link formation. However, our work has goals which are
distinct from link prediction [4, 24] in that we are modeling a
distribution of graphs with similar structure and correlation,
not a conditional distribution of unobserved edges given a
set of observed edges and vertex attributes.

3. NOTATION AND BACKGROUND
A graph G = 〈V,E,X〉 is comprised of a set of Nv ver-

tices V, a set of Ne edges E ⊂ V × V, and a set of Nv
W -dimensional feature vectors xi ∈ X. An edge (vi, vj) in-
dicates a relationship between the vertices vi and vj . Given
E, the degree di of a vertex vi is defined by the number of

vertices that it is connected to
(
di =

∑Nv
j=1 I [(vi, vj) ∈ E]

)
.

The W -dimensional feature vectors xi ∈ X are paired with
corresponding vertices vi ∈ V and represent characteristics
of vi. For example, if vi represents a person, the wth char-
acteristic xi[w] could include attributes such as: IsConser-
vative, IsChristian, IsFemale, etc. In this work we consider
only binary attributes, but the algorithms and results hold
for more general settings.

3.1 Generative Graph Models
Let M be a generative graph model such as: Chung Lu

(CL) [2], Transitive Chung Lu (TCL) [18], Kronecker Prod-
uct Graph Model (KPGM) [11], or Block Two-Level Erdős
Rényi [8]. We consider the class of generative graph models
that represent the set of possible edges in the graph as binary
random variables Eij . In this case, the event Eij = 1 implies
(vi, vj) ∈ E (or (vj , vi) ∈ E in the case of undirected net-
works) and the modelM assigns a probability to the variable
Eij given a set of parameters ΘM ( P (Eij = 1|ΘM) ). Typi-
cally, ΘM is learned from an input graph Go = 〈Vo,Eo,Xo〉
using the model M.

As ΘM defines a distribution over graph configurations
with respect to the chosen model M, a complete set of
edges E can be drawn (sampled) using ΘM. To generate
a new graph G=〈V,E〉, every edge is sampled according to
Bernoulli( P (Eij = 1|ΘM) ); if the draw is a success, the
edge (vi, vj) is added to E. Note that these models do not
consider attributes X that are observed in the input graph.

Algorithm 1 AcceptRejectSampling (Q,Q′)

1: R(Y ) = Q(Y )
Q′(Y )

2: A(Y ) = R(Y )
sup[R(Y )]

3: S = ∅
4: while |S| < number of samples do
5: u ∼Uniform(0, 1)
6: y ∼ Q′(Y )
7: if u < A(y) then
8: S = S ∪ y
9: end if

10: end while
11: return S

Chung Lu Graph Models: The Chung-Lu (CL) is a
generative graph model, a weighted version of the Erdős-
Rényi model [2]. In its basic form, every edge is sampled
proportional to the product of the degrees of its endpoints,
where the probabilities of an edge is given by:

PCL(Eij = 1|ΘCL) =
θdiθdj∑
vk∈V

θdk
where ΘM = [θd1 , · · · , θdNv ] and θdi = di.

This formulation guarantees the expected degree of the
sampled graph is equal to the degree of the original graph:

ECL [di|ΘCL] =
∑
vj∈V

θdiθdj∑
vk∈V

θdk
= θdi

∑
vj∈V θdj∑
vk∈V

θdk
= θdi

In [19], the authors noted that generating a network with
a random draw on every edge is computationally expensive
(O
(
N2
v

)
), and proposed drawing from the degree distribu-

tion
(

θdi∑
k θdk

)
twice in order to generate an edge, and re-

peating the process Ne times.

Kronecker Product Graph Models: With Kronecker
Product Graph Models (KPGM), K Kronecker products of
a b× b initiator matrix of parameters ΘM are used to define
the marginal probabilities of edges in the network [11]. For
example, the marginal probability of an edge existing is:

PKP (Eij = 1|ΘKP ) =

K∏
k=1

ΘKP (σki, σkj)

where σki indicates the position of the parameter in the
initiator matrix ΘM that is associated with vertex (vi) in
the kth Kronecker multiplication. The fast generation al-
gorithm for KPGM draws from the normalized parameter

matrix
(

ΘM∑
ij ΘM

)
K times to determine a single edge sam-

ple, then repeats the process Ne times.

3.2 Accept-Reject Sampling
Accept-Reject sampling is a framework for generating sam-

ples from a desired distribution Q [13]. For many distri-
butions, direct sampling from Q is difficult either because
direct methods do not exist or are inefficient; however, pro-
posal distributions Q′ exist which are easier to sample.

Given distributions Q(Y ), Q′(Y ) for a random variable Y ,
define the ratio between them for a particular value Y = y:

R(Y = y) =
Q(Y = y)

Q′(Y = y)
R(Y ) =

Q(Y )

Q′(Y )



with the set of ratios over the possible values for Y being
R(Y ): The acceptance probabilities A(Y = y) (and corre-
sponding set A(Y )) are defined as:

A(Y = y) =
R(Y = y)

sup [R(Y )]
A(Y ) =

R(Y )

sup [R(Y )]

A typical algorithm for accept-reject sampling is given in
Algorithm 1. It begins by initially computing R(Y ),A(Y ),
then proceeds to iteratively propose (or draw) samples y ∼
Q′(Y ) (lines 4-10). With probability A(y), the proposed
samples are accepted in the set of samples to return (S);
otherwise they are rejected. For intuition, when the distribu-
tion Q′(Y ) samples y too frequently in comparison to Q(Y ),
those samples are generally excluded from the final sample
set. The resulting distribution of accepted samples follows
Q(Y ). Accept-Reject sampling can be utilized for discrete
or continuous random variables, with the only requirement
that the ratios are bounded [13].

4. ATTRIBUTED GRAPH MODELS
In this section we outline our proposed Attributed Gen-

erative Model (AGM) framework. Current scalable graph
models (such as TCL and KPGM) draw from the joint dis-
tribution of edges given a set of edge parameters ΘM. This
could be combined with simple generation of attributes on
the vertices, given attribute parameters ΘX , by assuming
the vertex attributes are independent of the edges. However,
as social networks typically exhibit homophily this assump-
tion is generally incorrect, meaning:

P (E|X,ΘM)P (X|ΘX) 6= P (E|ΘM)P (X|ΘX)

Here, P (X|ΘX) represents a prior distribution for the at-
tributes on the vertices, which can be estimated, for exam-
ple, using probabilistic graphical models [9]. However, es-
timation of P (E|X,ΘM) in large domains remains an open
problem. For example, consider again the motivating case
from the introduction, where the goal is to model the Po-
litical Views in an input friendship network Go. If we as-
sume independence between attributes and edges (as scal-
able graph models do), the generated graph will have many
fewer friendships generated among two Conservatives (C-C)
compared to those that are observed in Go (Figure 1.a).
If we consider the ratio between the attribute configurations
on edges observed in the input network against the proposed
edges (from the independent model), configurations such as
NC-C are overrepresented by the proposed model (Figure
1.b). This motivates our use of accept-reject sampling in
AGM—our new framework that considers the dependencies
between the attributes and edges of a network in a genera-
tive model.

4.1 Framework
Our AGM framework incorporates distributions over the

attributes (P (X|ΘX)) and edges (P (E|ΘM)). In addition,
the AGM approach uses a parameterization ΘF to model
the desired attribute correlations across edges in a scalable
way—in conditionals of the form P (Eij = 1|X,ΘM,ΘF ).
Specifically, we introduce a deterministic function f(xi,xj),
which maps tuples of attribute vectors to a single model
of correlation across linked edges.The random variables Eij
remain conditionally independent Bernoulli trials, and the
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Figure 1: (a) Distributions of Politics across edges (C conser-
vative, NC non conservative), for network Go and network
generated by M. (b) Ratios between these distributions
(left y-axis) and acceptance probabilities (right y-axis).

only additional dependence is on the attributes of the inci-
dent vertices xi,xj . Thus, the edge trials are conditionally
independent from one another:

P (E|X,ΘM,ΘF ) =
∏
ij

P (Eij = 1|X,ΘM,ΘF )

=
∏
ij

P (Eij = 1|f(xi,xj),ΘM,ΘF )

Let Po(Eij = 1|f(xi,xj),ΘM,ΘF ) be the conditional dis-
tribution of an edge in the observed graph given the cor-
responding attributes on the incident vertices, with ΘF re-
ferring to the parameterization estimated from the observed
graph. Applying Bayes’ Theorem, we have:

Po(Eij = 1|f(xi,xj),ΘM,ΘF )

=
Po(f(xi,xj)|Eij = 1,ΘM,ΘF ) · Po(Eij = 1|ΘM,ΘF )

Po(f(xi,xj)|ΘM,ΘF )

= Po(Eij = 1|ΘM,ΘF )
Po(f(xi,xj)|Eij = 1,ΘM,ΘF )

Po(f(xi,xj)|ΘM,ΘF )

Here we assume that the prior distribution of the edge is de-
fined by our chosen structural model M, meaning Po(Eij =
1|ΘM,ΘF ) = PM(Eij = 1|ΘM), while the posterior distri-
bution accounts for the observed vertex attributes. Unfortu-
nately, it is not simple to derive efficient estimation and sam-
pling methods for the underlying data that reflect the ob-
served edge/attribute correlations. However, there has been
considerable work on scalable structural generation models
(i.e.,M). Thus, we exploit the sampling mechanism from a
simpler graph model M to approximate the true data dis-
tribution observed in Go.

We define the ratio between the edge probabilities in the
the observed data Go and in the graph model M:

R(f(xi,xj)|ΘM,ΘF ) =
Po(Eij = 1|f(xi,xj),ΘM,ΘF )

PM(Eij = 1|f(xi,xj),ΘM,ΘF )
(1)

Given estimation and sampling methods for M, we can ad-
just the edge probabilities to recover the distribution for Go

using R(f(xi,xj)|ΘM,ΘF ):

Po(Eij = 1|f(xi,xj),ΘM,ΘF )

= PM(Eij = 1|f(xi,xj),ΘM,ΘF ) · R(f(xi,xj)|ΘM,ΘF )
(2)

The equation above can be used to adjust for the discrep-
ancies between the probabilities calculated by the modelM
and those that reflect the true data distribution of Go. For
sparse networks we can utilize a sample graph from M and
the original graph Go to further approximate R in Equa-
tion 2.

Lemma 1. Given a target distribution Po and a genera-
tive graph model M, we can model Po indirectly using PM



and the ratio R from Eq. 1. Furthermore, when the edge pri-
ors are modeled byM (i.e., Po(Eij=1|ΘM,ΘF ) = PM(Eij=
1|ΘM) ) and the graph is sparse, we can approximate R ef-

ficiently with R̃ =
Po(f(xi,xj)|Eij=1,ΘM,ΘF )

PM(f(xi,xj)|Eij=1,ΘM,ΘF )
:

Po(Eij = 1|f(xi,xj),ΘM,ΘF )

= PM(Eij = 1|ΘM) · R(f(xi,xj)|ΘM,ΘF ) (3)

≈ PM(Eij = 1|ΘM) · R̃(f(xi,xj)|ΘM,ΘF )

= PM(Eij = 1|ΘM) ·
Po(f(xi,xj)|Eij = 1,ΘM,ΘF )

PM(f(xi,xj)|Eij = 1,ΘM,ΘF )
(4)

See proof in Appendix A. Estimation and sampling in AGM
involves the three probabilities on the last line of Equation 4.
From a high level, these can each be explained as follows:

• PM(Eij = 1|ΘM) is the prior probability of an edge
existing according to M.

• Po(f(xi,xj)|Eij = 1,ΘM,ΘF ) represents the correla-
tions observed in the graph Go.

• PM(f(xi,xj)|Eij = 1,ΘM,ΘF ) represents the corre-
lation (randomly) produced by M.

Edge samples with attribute configurations that are under-
sampled in M are given a higher conditional probability,
while samples with configurations that are over-sampled in
M are given lower probability. AGM provides efficient meth-
ods for sampling and estimation in each of these three dis-
tributions.

4.2 Sampling
Ideally, an algorithm would estimate and sample directly

from Equation 4. However, as N2
v edges can exist in the net-

work, both estimation and sampling from this distribution
are prohibitively expensive for large networks. Instead, we
draw Ne samples from a multinomial parameterized by:

Q(i, j) =
Po(Eij = 1|f(xi,xj),ΘM,ΘF )∑
k,l Po(Ekl = 1|f(xk,xl),ΘM,ΘF )

∝ Po(Eij = 1|f(xi,xj),ΘM,ΘF )

By applying Equation 3 and normalizing, Q(i, j) is pro-
portional to:

Q(i, j) ∝ PM(Eij = 1|ΘM) · R(f(xi,xj)|ΘM,ΘF )

∝Q′M(i, j) · A(f(xi,xj)|ΘM,ΘF )

where:

Q
′
M(i, j) =

PM(Eij = 1|ΘM)∑
k,l PM(Ekl = 1|ΘM)

(5)

A(f(xi,xj)|ΘM,ΘF ) =
R(f(xi,xj)|ΘM,ΘF )

supvl,vk∈V
R(f(xl,xk)|ΘM,ΘF )

Q(i, j) is therefore proportional to a draw from a propos-
ing matrix Q′

M(i, j), moderated by an acceptance probabil-
ity conditioned on the features (A(f(xi,xj)|ΘM,ΘF )).

The sampling algorithm for AGM is outlined in algorithm
2. The algorithm begins by initializing the nodes and sam-
pling attributes (lines 2-3) and computing a proposing dis-
tribution Q′

M(i, j) fromM and ΘM (line 4). Then it draws
a graph from M (line 5) in order to compute the ratios
R(f(xi,xj)|ΘM,ΘF ) and the corresponding acceptance prob-
abilities (lines 7-8). The main loop (lines 11-17) repeatedly

Algorithm 2 SampleFromAGM (ΘM,ΘX ,ΘF , G
o)

1: // Draw initial graph and attributes
2: V′ = V
3: X′ ∼ from X using ΘX
4: Calculate Q′

M in Eq. 5 from M and ΘM
5: E′ ∼ from M using Q′

M
6: // Compute Acceptance Probabilities

7: R(f(X,X)) =
P(f(Xo,Xo)|Eo,ΘoF ,Θ

o
M)

P(f(X′,X′)|E′,Θ′
F
,Θ′M)

8: A(f(X,X)) = R(f(X,X))
sup[R(f(X,X))]

9: // Reinitialize E and generate new edges based on X
10: E′ = ∅
11: while |E′| < |Eo| do
12: E′

ij ∼ multinomial(Q′
M)

13: u ∼ Uniform(0,1)
14: if u ≤ A(f(xi,xj)) then
15: E′ = E′ ∪ E′

ij

16: end if
17: end while
18: return G′ = 〈V′,E′,X′〉

draws a sample from Q′
M and determines whether to ac-

cept it into the graph based on the attributes of the vertices
of the proposed edge and the acceptance probabilities (line
14). This loop is repeated until enough edges are inserted
into the network.

For certain graph models, the calculation of Q′
M could be

prohibitively expensive, but models such as FCL and KPGM
do not need direct computation of Q′

M(i, j). Consider the
fast Chung Lu (FCL) model, which samples (vi, vj) with

probability
θdi

θdj∑
k θdk

∑
l θdl

[18]. This sampling algorithm sim-

plifies to repeated samples from Q′
M(i, j) as expressed in

Equation 5:

θdiθdj∑
k θdk

∑
l θdl

=

θdi
θdj

2Ne∑
k,l

θdk
θdl

2Ne

=
PCL(Eij = 1|ΘCL)∑
k,l PCL(Ekl = 1|ΘCL)

Furthermore, the KPGM family of models also samples
according to Equation 5. To quickly sample KPGMs, each

edge is sampled with probability
∏K
k=1 ΘKP (σki,σkj)

(
∑
lm ΘKP )K

[11]. As

with FCL, we can rearrange to get:

∏K
k=1 ΘKP (σki, σkj)

(
∑
lm ΘKP )K

=
PKP (Eij = 1|ΘKP )

E[|E|]
=

PKP (Eij = 1|ΘKP )∑
lm PKP (Elm = 1|ΘKP )

where (
∑
lm ΘKP )K = E[|E|] [16]. Thus, both FCL and

KPGM, two popular scalable graph models, iteratively sam-
ple Eij = 1 from Q′

M(i, j), without explicit enumeration of
the full Q′

M(i, j) distribution.

4.3 Estimation
Algorithm 3 outlines the framework for learning the pa-

rameters required by SampleFromAGM (Algorithm 2). Given
a generative model M, we assume methods for estimation
of parameters ΘM for modeling P (E|ΘM) exist. We as-
sume a model P (X|ΘX ) where ΘX can be learned from the
vertex attributes, and from which samples x ∼ P (X|ΘX )
can be drawn. However, as AGM additionally models corre-
lations in the original network Po (f(X,X)|E = 1,ΘF ,ΘM)
and model PM (f(X,X)|Eij = 1,ΘF ,ΘM), we need to es-



Algorithm 3 LearnAGM (M,X , Go)
1: Learn ΘM from Go using M
2: Learn ΘX from Go using X
3: Learn ΘF from Go

4: return (ΘM,ΘX ,ΘF )

ΘM Eij

xi

xj

Figure 2: Estimation where attributes are independent of
the model parameters given the edges.

timate the parameters ΘF for each. In this subsection, we
show how these conditionals can be efficiently estimated.

We begin by making a simplifying assumption about the
dependencies between the observed features f(xi,xj) and
the parameters of the structural graph model (ΘM), then
later demonstrate how to estimate the accept-reject proba-
bilities when this assumption is removed. To start, assume
the distribution of the features f(xi,xj) is conditionally in-
dependent of the graph model parameters ΘM

1:

P (f(xi,xj)|Eij = 1,ΘM,ΘF ) = P (f(xi,xj)|Eij = 1,ΘF ) (6)

A graphical representation of this assumption is given in
Figure 2. The interpretation is this: if we observe the value
of Eij , then the parameters for the distributions of f(xi,xj)
do not depend on the generative model M. This simpli-
fies our estimation of the distribution, as it removes depen-
dencies on the underlying model M. Our assumption of
conditional independence helps to improve the efficiency of
the algorithm as we can estimate the parameters ΘF using
maximum likelihood estimation (MLE).

Θ̂F = arg max
ΘF

∑
(vi,vj)∈E

logP (f (xi,xj) |Eij = 1,ΘF )

We will now demonstrate how to estimate the MLE of
P (f(xi,xj)|Eij = 1,ΘF ). First, we will use the correlation
of a single binary variable w across edges as its criteria:

fw(xi,xj) =


(0, 0) if xi[w] = 0 and xj [w] = 0

(1, 1) if xi[w] = 1 and xj [w] = 1

(0, 1) if xi[w] 6= xj [w]

(7)

where xi(0) represents the attribute whose correlation we
are trying to encode; for example, xi(0) can be a binary
attribute indicating whether the corresponding individual is
Conservative or Not Conservative. To maximize the like-
lihood, we take all (vi, vj) ∈ E and count the number of
observations of each value the feature can take (in this case,
{(0, 0), (0, 1), (1, 1)}). For example:

Θ̂Fw ((0, 0)) =

∑
(vi,vj)∈E I [(xi[w] = 0) ∧ (xj [w] = 0)]

|E|

For attributes with larger scope S, the function f(xi,xj)
makes a mapping over the

(
S+1

2

)
combinations using the S

1These are equally applicable for Po and PM, so the refer-
ence to a specific model is dropped.

possibles values of the characteristic, where f(xi,xj) and

Θ̂F are given by

fw(xi,xj) =


(k, k) if xi[w] = k ∧ xj [w] = k

(k, l) if (xi[w] 6= xj [w])∧
((xi[w] = k ∧ xj [w] = l)∨
(xi[w] = l ∧ xj [w] = k))

Θ̂Fw ((k, l)) =

∑
(vi,vj)∈E I [fw(xi,xj) = (k, l)]

|E|

We can also create an edge function which considers more
than a single attribute. We let:

f(xi,xj) = (f0(xi,xj), · · · , fW−1(xi,xj)) (8)

meaning the output of f(xi,xj) is the multiple pairs of the
edge functions fw(xi,xj) defined for the W different charac-
teristics. For example, when we have two attributes such as
Religion and Political Views our corresponding features are
f(xi,xj) = (f0(xi,xj), f1(xi,xj)), where f0(xi,xj) refers to
the pairing of religious views and f1(xi,xj) to the pairing of
political views. Although this edge function has a higher or-
der of magnitude than with single variables, the estimation
of Θ̂F can also apply to Equation 8. This allows for modeling
a variety of feature functions (Θ̂F ((k1, l1), · · · , (ki, lj))).

Removing Conditional Independence Assumption
In Equation 6, we inserted an assumption that the distribu-
tion of edge features was independent of the underlying gen-
erative graph modelM. For many generative graph models
this is true, such as FCL and KPGM. However, other mod-
els are more complicated (e.g., TCL). TCL enforces that the
marginal probability of an edge existing in the graph will
remain proportional to the product of the degrees [18]. As
TCL iteratively lays triangles over an existing graph sam-
ple, future edge samples are dependent on the previously
laid edges in the network. By extension, the samples are
dependent on our accept-reject probabilities, as well as our
edge function parameters ΘF .

To address this issue, we use the fact that the correct
accept-reject probabilities will result in a sampled network
G′ where the observed f(xi,xj) in G′ equals the observed
f(xi,xj) in Go. Let Aold(f(xi,xj)|ΘM,ΘF ) be the ini-
tial acceptance probabilities. Define α(f(xi,xj)) to be the
proportion PM(f(xi,xj)|Eij = 1,ΘM,ΘF ) under- or over-
samples the desired distribution:

Po (f(xi,xj)|Eij = 1,ΘM,ΘF ) =

α (f(xi,xj)) · PM (f(xi,xj)|Eij = 1,ΘM,ΘF )

Solving for α(f(xi,xj)) gives:

α (f(xi,xj)) =
Po (f(xi,xj)|Eij = 1,ΘM,ΘF )

PM(f(xi,xj)|Eij = 1,ΘM,ΘF )

We then update our acceptance probabilities with:

A
new

(f(xi,xj)|ΘM,ΘF ) = α(f(xi,xj)) ·Aold
(f(xi,xj)|ΘM,ΘF )

A subsequent graph is then drawn by AGM, but using the
updated acceptance rates Anew(f(xi,xj)|ΘM,ΘF ). If AGM
previously over-sampled certain edge values, it will adjust
and sample them lower. In contrast, if attribute combina-
tions are observed too rarely, AGM will adjust and sample
them at a higher rate.

In Algorithm 2, these changes can be implemented by
adding another loop around lines 7-17—in which A and R



are updated as described and the edges then drawn again
according to the new accept-reject probabilities. We find it
takes relatively few iterations of this outer loop to converge
on accurate acceptance probabilities.

4.4 Runtime
The benefit of using AGM is the efficiency of the algo-

rithm. Namely, let κ indicate the complexity of sampling
from Q(i, j) ∝ Q′

M(i, j) · A(f(xi,xj |ΘM,ΘF )). For exam-
ple, with FCL κ = O(1), while for KPGM κ = O(logNv).
Since the AGM uses this call once per iteration, its com-
plexity is O(κ ·Ne ·λ), where Ne ·λ corresponds to the total
number of iterations to be sampled to obtain a total of Ne
edges and λ is the expected value of the number of trials
to get a single edge accepted (a geometric distribution pa-
rameterized by the probability a proposed edge is accepted).
Then, the total running for FCL is O(Ne ·λ) and for KPGM
is O(Ne · logNv · λ).

5. AGM ANALYTICAL PROPERTIES
We have proposed AGM, a new framework which consid-

ers the dependencies between the attributes and edges of a
network. Besides its general formulation that can be imple-
mented for a class of generative graph models and its effi-
cient running time, AGM has several important analytical
characteristics:

• Theorem 1: AGM approximately draws from the con-
ditional edge distribution Po(E|X,ΘM,ΘF ).

• Theorem 2: The expected probability of an edge (vi, vj)
in the AGM model is equal to the probability of the
edge (vi, vj) in the underlying graph model M.

• Corollary 1: The expected degree of a vertex in AGM
is equal to its expected degree in M.

For clarity, we will discuss these theorems below but defer
the proofs to the Appendix. We restate Equation 3 from
Section 4.1:

Po(Eij = 1|f(xi,xj),ΘM,ΘF )

= PM(Eij = 1|ΘM) · R(f(xi,xj)|ΘM,ΘF )

Which is used throughout this section. For simplicity we
define:

Z =

Nv,Nv∑
i,j

PM(Eij = 1|ΘM) C = sup
vk,vl∈V

[R(f(xl,xk)|ΘM,ΘF )]

Edge Probabilities: Recall that a draw of Eij from our
proposal distribution Q′ occurs with probability PM(Eij =
1|ΘM)/Z. In Lemma 2, we show the target conditional dis-
tribution Q (probability of an edge existing given the vertex
attributes) can be split into a sum of (a) the probability of
drawing Eij ∼ PM(Eij = 1|ΘM)/Z and (b) the acceptance
probability of f(xi,xj) (proof in Appendix B).

Lemma 2. For every edge (vi, vj) ∈ E:

Po(Eij = 1|f (xi,xj),ΘM,ΘF )

=

Z·C∑
1

[
PM(Eij = 1|ΘM)

Z
· A(f(xi,xj)|ΘM,ΘF )

]

This shows the conditional probabilities of the edges can
be broken into Z · C parts, with each part referring to the
probability (vi, vj) is drawn and accepted. However, the

probability of an edge existing in the accept-reject process
is not the summation of the individual probabilities, but:

1−
[
1−

(
PM(Eij = 1|ΘM)

Z
A(f(xi,xj)|ΘM,ΘF )

)]Z·C
The probability in the square brackets represents the prob-
ability of not drawing edge (vi, vj) on each iteration. The
loop is executed Z · C times, meaning the quantity on the
right is the probability an edge is never sampled. The prob-
ability an edge is sampled is 1 minus this quantity. We
prove the accept-reject process is a good approximation to
Po(Eij = 1|f (xi,xj),ΘM,ΘF ), as the probability is small,
due to the Binomial Approximation [23] (Proof in Appendix
C).

Theorem 1. For every edge (vi, vj) ∈ E:

PAGM :=1−
[
1−

[
PM(Eij = 1|ΘM)

Z
A(f(xi,xj)|ΘM,ΘF )

]]Z·C
≈ Po(Eij = 1|f (xi,xj),ΘM,ΘF )

Thus, the AGM sampling formulation provides a good ap-
proximation to the true distribution of edges conditioned on
the vertex attributes.

Expected Degrees: Many generative graph models explic-
itly model the degree distribution of the network; KPGM
has a heavy-tailed degree distribution [11], while the CL
family of models has a degree distribution whose expecta-
tion is equal to that of the input graph Go. We now prove
that the expected degree of a vertex with AGM is equal to
the expected degree of the vertex as produced by M. We
begin with Theorem 2, which states that the expected prob-
ability of an edge under AGM is equal to the probability of
the edge as defined by M (Proof in Appendix D).

Theorem 2. If the generating distributionM is indepen-
dent from the parameters ΘF , i.e., PM(Eij = 1|ΘM,ΘF ) =
PM(Eij = 1|ΘM), then

EX [Po(Eij = 1|f(xi,xj),ΘM,ΘF )] = PM(Eij = 1|ΘM)

Using Theorem 2, we can show that the expected value of
the vertex degree under AGM is equal to the expected value
of the vertex degree under M (Proof in Appendix E).

Corollary 1. If the generating distribution M is inde-
pendent from the parameters ΘF , i.e., PM(Eij = 1|ΘM,ΘF ) =
PM(Eij = 1|ΘM), then EX [di] = EM[di].

Corollary 1 states that regardless of the generating distri-
bution, if the attributes are independent of the generating
distribution we will draw the same degrees. Applying AGM
with CL models will provably have the same expected de-
gree distribution as the input graph, while applying AGM
with KPGM will retain KPGM’s expected degrees.

6. EXPERIMENTS
To demonstrate the flexibility of AGM, we use four popu-

lar generative graph models as proposing distributions: fast
Chung Lu (FCL), transitive Chung Lu (TCL), and the Kro-
necker Product Graph Model (KPGM) with a 2x2 and 3x3
initialization matrix. Our experiments will show that the



AGM versions of each of the underlying generative models
have the same structure as the structural model, but cap-
ture the Pearson correlations of the attributes as well. We
implemented learning and generation for FCL and TCL di-
rectly, only modifying the generation step for AGM-FCL
and AGM-TCL. For the two KPGMs, we utilized the au-
thors’ publicly distributed code for learning the parameter
matrix2, but augmented the generation process to incorpo-
rate correlation. We also compare against the Multiplicative
Attribute Graph (MAG) model; as MAG is intended for
learning latent attributes, we augment the model for usage
in this domain to utilize the known correlations3.

6.1 Datasets
We evaluate our models on two network data sets: the

CoRA citations network [14] and Facebook wall postings
from Purdue University. For CoRA, we consider the cat-
egorical feature “AI” (1 iff the topic of a paper lies in the
field of Artificial Intelligence). CoRA contains 11,881 ver-
tices with 31,482 citations between them, and the AI feature
is highly correlated across edges. We model the distribu-
tion of attributes P (X|ΘX ) by maximizing the likelihood of
Bernoulli trials; the probability of a label being AI is pro-
portional to the number of AI labels in the CoRA dataset.

The Facebook network has 449,748 user vertices with
1,016,621 wall postings between them. We estimate model
parameters from all visible vertices, ignoring instances for
which privacy settings prevent us from accessing the infor-
mation. We consider two attributes: Religion (1 iff Reli-
gious Views contains the string “christ”) and Political (1 iff
Political Views contains the string “conservative”). Here, we
model the distribution of attributes P (X|ΘX ) as a bivariate
multinomial distribution and use maximum likelihood esti-
mation to estimate the parameters. For each network, the
vertex attributes are drawn independently and identically
distributed from their respective P (X|ΘM) distributions.

6.2 MAG Implementation
Rather than use the normal fitting process which assumes

latent attributes, we use the observed attributes to calcu-
late the probability of seeing an edge between particular at-
tributes. This allows us to directly calculate the affinity ma-
trix parameter for the MAG model. On the single-attribute
CoRA dataset this calculation is simple, as
P (Eij = 1|f(xi,xj)) can be estimated using the number
of edges between vertices with a specific pair of attribute
values.

This calculation is not as simple on the Facebook dataset
as we must estimate the probabilities for two attributes. Let
xi[0] represent the Political attribute and xi[1] represent
the Religion attribute. As MAG treats edge affinities as
independent, we decompose P (Eij = 1|f(xi,xj)) into two
independent components: P (Eij = 1|f(xi[0],xj [0])) and
P (Eij = 1|f(xi[1],xj [1])). Then, for every attribute permu-
tation of two vertices we can estimate P (Eij = 1|f(xi,xj))
from the observed data and set up a system of equations.
Solving this system of equations gives us
P (Eij = 1|f(xi[0],xj [0])) and P (Eij = 1|f(xi[1],xj [1])),
which are the edge affinities. However, as the real data has
dependencies between the attributes, there is no exact so-
lution for this system and we must use an approximation

2Source available at http://snap.stanford.edu/
3Source also available at http://snap.stanford.edu/

instead. We chose an approximation that kept the affinity
for two non-conservative vertices equal to the affinity for two
non-religious vertices.

Finally, we must take into account the vertices in the Face-
book network with unobserved attributes. These vertices
had much lower degrees than observed vertices in the origi-
nal network. We chose to create a third attribute, observed
vs. unobserved, when generating the graph. Vertices labeled
unobserved still have their other attributes simulated, but
have their edge affinities reduced to the rate of unobserved
vertices in the original graph.

6.3 AGM Implementations
In order to test the correlations of generated networks, ev-

ery vertex was assigned attributes drawn from the prior dis-
tribution of vertex attributes as computed on the real world
network and independent of the other vertices. Tests were
run for each of our four generative models, with each gener-
ative model proposing edges which are then either accepted
or rejected. The end result is a joint sampling of attributes
and edges, with the edges having been conditioned on the
attributes.

Edge Functions: For the CoRA dataset, we have one
feature to consider (AI) and we use the edge feature for a
single attribute as discussed in Section 4.3, Equation 7. For
the Facebook dataset, we have two attributes to consider
(Religion and Politics). This corresponds to the edge fea-
tures discussed in Equation 8, which models the joint con-
ditionals of the two attributes, allowing AGM to model the
correlations of each.

6.4 Graph Structure
We begin our analysis by determining whether AGM pro-

duces graphs which alter the structure of the proposing dis-
tributions. First, the degree distributions for each dataset
are plotted in Figure 3a-b and compared against some of
the models (to reduce clutter we omit the simpler FCL and
KPGM2x2 in this part of the analysis). For each of these
plots, the x-axis represents vertex degrees, while the y-axis
represents the complementary cumulative distribution func-
tion (CCDF). For any point on the x-axis, the y-axis is the
proportion of vertices with the corresponding degree (on the
x-axis) or higher. The degree distribution of CoRA (Figure
3.a) shows that AGM-TCL closely matches the degree distri-
bution of TCL, while AGM-KPGM3x3 closely matches the
degree distribution of KPGM3x3. For the Facebook network
(Figure 3.b), which has a more complicated edge feature dis-
tribution, AGM-TCL and AGM-KPGM3x3 also match their
corresponding proposing distributions (TCL and KPGM3x3).

We extend our analysis of the degrees in Table 1, where
we show the KS-Statistic between the degree distribution of
each AGM model and its corresponding generative model
(FCL, TCL, KPGM2x2, KPGM3x3). We see no change be-
tween the original model and corresponding AGM distribu-
tions, since for all but one test we are unable to reject the
null hypothesis that the distributions are equal (p = 0.01).
TCL is the only rejection, which is due to TCL not having
dyadic independence. However, empirically AGM-TCL per-
forms comparably to TCL, meaning we can effectively model
degree distributions even when there is edge dependence.

In Figure 4.a-b, we show the local Clustering Coefficient
distributions, which measure the number of triangles each
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Figure 3: Degree distributions for each network

Dataset
AGM KS-Distance (Degree Distribution)
FCL TCL KPGM2x2 KPGM3x3

CoRA 0.003 0.021 0.004 0.009
Facebook 0.003 0.002 0.004 0.004

Table 1: KS-Statistic for AGM degree distributions against
corresponding proposal distributions.

vertex has compared to the number of triangles the vertex
could have given its degree. KPGM3x3 does not explicitly
model the clustering coefficients in the network, thus the low
clustering the model produces is expected. Further, since its
corresponding generative model does not generate networks
with high clustering, neither does AGM-KPGM3x3. In con-
trast, TCL was explicitly designed to incorporate transitiv-
ity into the generative process by incorporating two step
random walks. As TCL proposes a larger numbers of tri-
angles, the networks produced by AGM-TCL will also have
a higher numbers of triangles. More generally, AGM does
not interfere with structural characteristics such as degree
and clustering that the underlying generative graph model
provides, meaning AGM is not limited to a single character-
ization of structural components.

6.5 Feature Correlations
Lastly, we demonstrate how our formulation can capture

accurate correlations between the feature instances. We be-
gin by analyzing the correlations of the simpler CoRA net-
work (with a single attribute to model), then move to the
more complicated Facebook network with two attributes.

As seen in Table 2, the initial CoRA network contains
a high level of correlation (.837), which none of our un-
derlying generative models capture (FCL, TCL, KPGM2x2,
and KPGM3x3). Introducing our AGM framework in con-
junction with each one, we see that every AGM version of
the models has correlation very close to the original net-
work. Further, recall that each AGM method accomplishes
this without disrupting the underlying structural distribu-
tion (prior subsection). Thus, AGM is jointly modeling both
structural components and the correlation of the attribute.

When MAG is presented just the single attribute found in
CoRA it captures the correlation as well but when the num-
ber of attributes is expanded MAG begins to break down.
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Figure 4: Clustering Coefficients for each network.

Model
Correlations

CoRA Facebook
AI R P RP

Original 0.837 0.108 .211 0.106

MAG 0.835 0.584 0.436 0.002

FCL 0.005 0.001 0.001 -0.001
AGM-FCL 0.835 0.130 0.223 0.095

TCL -0.006 0.001 0.001 0.001
AGM-TCL 0.856 0.128 0.219 0.093

KPGM2x2 -0.002 0.001 -0.002 0.001
AGM-KPGM2x2 0.839 0.131 0.221 0.095

KPGM3x3 -0.004 0.001 -0.001 0.001
AGM-KPGM3x3 0.841 0.132 0.221 0.092

Table 2: Correlations for attributes in each dataset. Bold
indicates within .05 of the original network correlation.

MAG does not accurately model the joint distribution of
edges given vertex attributes and does not model the cor-
rect correlations (Table 2).

In contrast, for each underlying proposal distribution,
AGM’s augmentation allows the proposal distribution to
model the edge correlations. This observation holds for each
possible correlated attribute pair: Religion (R), Politics (P),
and the correlation of Religion with Politics across edges.
Again, these correlations are being modeled while the corre-
sponding structural behavior remains unchanged, meaning
AGM models both the attributes and structure of the graph.

7. CONCLUSIONS
In this work, we have introduced a new framework, the

Attributed Graph Model (AGM), which enables conditional
sampling of graph structure based on vertex attributes. We
have shown that AGM can be combined with several gener-
ative graph models, i.e., fast Chung Lu (FCL), transitive
Chung Lu (TCL), and Kronecker Product Graph Model
(KPGM). AGM has efficient learning and sampling mech-
anisms that accurately replicate both the characteristics of
the underlying graph structure and the vertex attribute cor-
relations. Further, we demonstrated empirically that our
approach offers improvements compared to the competing
Multiplicative Attributed Graph (MAG) model. Notably,
our AGM framework enables efficient generation of large-
scale network structure with homophily.

AGM makes a single draw from the distribution of at-
tributes on vertices, followed by a draw from the distribu-
tion of edges conditioned on attributes. This process pro-
duces a sample from the joint distribution of attributes and
edges. In future work we will consider models from the area
of statistical relational learning, which represent and reason
about complex correlations among linked vertices through
the joint distribution of vertex attributes given a set of edges.
AGM could be combined with these types of models by first
drawing a joint sample of edges conditioned on the vertex
attributes, followed by drawing a joint sample of vertex at-
tributes given the new edges.

The above search over the joint distribution points to ad-
ditional interesting problems in temporal domains. Namely,
the vertices and edges that occur in a timewindow t are likely
to be correlated with the vertices and edges that occur in
previous timesteps, meaning we can jointly draw edges and
attributes conditioned on prior timesteps. Interesting ques-
tions in this scenario would involve assessing stationarity of
parameters, as well as investigating mechanisms to identify
and model periodic behavior.
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APPENDIX
A. PROOF OF LEMMA 1

We wish to model the conditional probability of an edge
existing in the original network using the proposing distri-
bution M. This results in a Ratio representing how close
the two distributions are to each other, which we denote

R(f(xi,xj)|ΘM,ΘF ) =
Po(Eij=1|f(xi,xj),ΘM,ΘF )

PM(Eij=1|f(xi,xj),ΘM,ΘF )
:

Po(Eij = 1|f(xi,xj),ΘM,ΘF )

= PM(Eij = 1|ΘM)R(f(xi,xj)|ΘM,ΘF )

= PM(Eij = 1|ΘM)
Po(Eij = 1|f(xi,xj),ΘM,ΘF )

PM(Eij = 1|f(xi,xj),ΘM,ΘF )

= Po(Eij = 1|f(xi,xj),ΘM,ΘF )

(9)

where PM(Eij = 1|ΘM) = PM(Eij = 1|f(xi,xj),ΘM,ΘF ).
We simplify R(f(xi,xj)|ΘM,ΘF ):

R(f(xi,xj)|ΘM,ΘF )

=
Po(Eij = 1|ΘM,ΘF )

Po(f(xi,xj)|Eij=1,ΘM,ΘF )

Po(f(xi,xj)|ΘM,ΘF )

PM(Eij = 1|ΘM)
PM(f(xi,xj)|Eij=1,ΘM,ΘF )

PM(f(xi,xj)|ΘM,ΘF )

=
Po(f(xi,xj)|Eij = 1,ΘM,ΘF )

PM(f(xi,xj)|Eij = 1,ΘM,ΘF )
·
[
PM(f(xi,xj)|ΘM,ΘF )

Po(f(xi,xj)|ΘM,ΘF )

]
(10)

Here we used our assumption on the prior to cancel the
terms. Consider normalization terms in the brackets4:

PM(f(xi,xj)|ΘF ) =PM(Eij = 1)PM(f(xi,xj)|Eij = 1,ΘF )

+PM(Eij = 0)PM(f(xi,xj)|Eij = 0,ΘF )

Po(f(xi,xj)|ΘF ) =PM(Eij = 1)Po(f(xi,xj)|Eij = 1,ΘF )

+PM(Eij = 0)Po(f(xi,xj)|Eij = 0,ΘF )

For dense matrices this would need to be computed exactly,
and for sparse matrices the estimates for P (f(xi,xj)|Eij =
0,ΘF ) can be approximated by sampling. However, for
sparse matrices this can be simplified further as PM(Eij =
0) dominates the sum for each equation as all edges exist
with probability near 0:

PM(f(xi,xj)|ΘF ) ≈ PM(Eij = 0)PM(f(xi,xj)|Eij = 0,ΘF )

Po(f(xi,xj)|ΘF ) ≈ PM(Eij = 0)Po(f(xi,xj)|Eij = 0,ΘF )

Further, Po(f(xi,xj)|Eij = 0,ΘF ) and PM(f(xi,xj)|Eij =
0,ΘF ) define distributions over nearly every possible pair of
vertices in V×V. As xi ∼ P (X|ΘX ) for both distributions,
Po(f(xi,xj)|Eij = 0,ΘF ) ≈ PM(f(xi,xj)|Eij = 0,ΘF ).
Thus, in Equation 10 the ratio in brackets is approximately
1. Inserting this result into Equation 9, the conditional is5:

4For the following discussion we omit ΘM from the equa-
tions to reduce clutter, as they appear in each term.
5With parameters ΘM reintroduced.

Po(Eij = 1|f(xi,xj),ΘM,ΘF )

= PM(Eij = 1|ΘM) · R(f(xi,xj)|ΘM,ΘF )

≈ PM(Eij = 1|ΘM) ·
Po(f(xi,xj)|Eij = 1,ΘM,ΘF )

PM(f(xi,xj)|Eij = 1,ΘM,ΘF )

B. PROOF OF LEMMA 2
We begin by applying Equation 3:

Po(Eij |f (xi,xj),ΘM,ΘF )

=PM (Eij = 1|ΘM)R(f(xi,xj)|ΘM,ΘF )

=

Z∑
1

[
PM(Eij = 1|ΘM)

Z
· R(f(xi,xj)|ΘM,ΘF )

]

=

Z·C∑
1

[
PM(Eij = 1|ΘM)

Z

(
1

C
· R(f(xi,xj)|ΘM,ΘF )

)]

=

Z·C∑
1

[
PM(Eij = 1|ΘM)

Z
· A(f(xi,xj)|ΘM,ΘF )

]

where in the second step we have multiplied every piece of
the summation by 1

Z
but summed Z times and in the third

step where we again multiply every instance by 1
C

, but ad-
ditionally sum over the quantity C times.

C. PROOF OF THEOREM 1
The Binomial Approximation [23] states that for values z

close to 0, (1 + z)α = 1 + αz. Here, our individual draws
and corresponding accept-reject probabilities are close to 0
for real-world networks, meaning:

1−
[
1−

[
PM(Eij = 1|ΘM)

Z
A(f(xi,xj)|ΘM,ΘF )

]]Z·C
≈1−

[
1− Z · C ·

[
PM(Eij = 1|ΘM,ΘF )

Z
A(f(xi,xj)|ΘM,ΘF )

]]
=Z · C ·

[
PM(Eij = 1|ΘM)

Z
A(f(xi,xj)|ΘM,ΘF )

]

=

Z·C∑
1

[
PM(Eij = 1|ΘM)

Z
· A(f(xi,xj)|ΘM,ΘF )

]
=Po(Eij = 1|f (xi,xj),ΘM,ΘF )

where in the last step we have applied Lemma 1.

D. PROOF OF THEOREM 2
We marginalize over the combinations of attributes that

can exist on the vertices.

EX [Po(Eij = 1|f(xi,xj),ΘM,ΘF )]

=
∑

xi∈Xi

∑
xj∈Xj

Po(f(xi,xj)|Eij = 1,ΘM,ΘF )PM(Eij = 1|ΘM)

= PM(Eij = 1|ΘM)
∑

xi∈Xi

∑
xj∈Xj

Po(f(xi,xj)|Eij = 1,ΘM,ΘF )

= PM(Eij = 1|ΘM)

where in the second step we observed the summation must
sum to 1 to be a valid probability distribution.

E. PROOF OF COROLLARY 1
Apply Theorem 2 and linearity of expectation:

EX[di] =
∑
vj

PM(Eij = 1|ΘM) = EM[di]
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