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Abstract—Localizing and manipulating features such as but-
tons, snaps, or grommets embedded in fabrics and other flexible
materials is a difficult robotics problem. Approaches that rely
too much on sensing and localization that occurs before touching
the material are likely to fail because the flexible material can
move when the robot actually makes contact. This paper ex-
perimentally explores the possibility of using proprioceptive and
load-based tactile information to localize features embedded in
flexible materials during robot manipulation. In our experiments,
Robonaut 2, a robot with human-like hands and arms, uses
particle filtering to localize features based on proprioceptive
and tactile measurements. Our main contribution is to propose
a method of interacting with flexible materials that reduces
the state space of the interaction by forcing the material to
comply in repeatable ways. Measurements are matched to a
“haptic map”, created during a training phase, that describes
expected measurements as a low-dimensional function of state.
We evaluate localization performance when using proprioceptive
information alone and when tactile data is also available. The
two types of measurements are shown to contain complementary
information. We find that the tactile measurement model is
critical to localization performance and propose a series of models
that offer increasingly better accuracy. Finally, the paper explores
this localization approach in the context of two flexible materials
insertion tasks that are important in manufacturing applications.

I. I NTRODUCTION

Flexible materials manipulation is an important class of
problems. Many “general assembly” tasks in automobile facto-
ries that are currently performed by humans involve installing
cables, carpets, and flexible plastics. Similarly, manufacturing
clothing, shoes, and other soft goods is labor-intensive because
robots are unable to manipulate flexible materials reliably.
Aside from its practical value, studying flexible materials
manipulation is interesting for its own reasons because many
existing approaches cannot easily be applied to the problem. It
is admittedly possible to manipulate flexible material without
estimating the state of the interaction once manipulation has
begun (for example, see the towel folding work in [1]).
However, if there is no mechanism for tracking state during
manipulation, then there is no possibility of reacting to un-
foreseen events. Given that the system is already interacting
with the object, it is natural to attempt to use a sense of touch
to track state.

This paper applies ideas used in mobile robot localization to
manipulation. There is a strong analogy: whereas the goal of
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Fig. 1. Robonaut 2 hand localizing a bump in a piece of flexible plastic.

mobile robot localization is to track the position of the robot
in the environment, the goal of manipulation localization is
to track the position of the object held in the hand. Also, the
kind of information available from range sensors or landmark
bearing estimates is of a similar complexity to that which
is available from touch sensors. Our basic approach is to
interact with a known object during a controlled training phase
whereby a map is created that describes how the material
“feels.” Then, during localization, the touch measurements are
matched to the map using Bayesian filtering. Many approaches
to flexible materials state estimation utilize high-dimensional
models of the space of possible material deformations (for
example [2], [3]). Instead, a key insight of this paper is that it
is frequently possible to manipulate a flexible material in such
a way that it always deforms in a certain way. As a result,
it is possible to reduce the dimensionality of the model by
assuming that this deformation always takes place. Our work
applies this idea to the problem of localizing “haptic features”
such as buttons, grommets, or snaps in flexible materials
through touch.

The details of this approach are explored experimentally
using Robonaut 2 [4] for three features embedded in flexible
materials: a bump in flexible plastic, a snap in fabric, and
a grommet in fabric (see Figure 4). Two types of touch
information are considered: proprioceptive measurements(the
configuration of a compliant hand during manipulation) and
tactile measurements using load-based sensors. We experimen-
tally characterize the localization accuracy using propriocep-
tive information alone and demonstrate that an improvementis
possible by also incorporating tactile information. We evaluate
the dimensionality in the tactile data that contains information
relevant to localization and show that the information con-



tained in the tactile data is qualitatively different from that in
the proprioceptive data. Finally, we demonstrate an additional
improvement in performance that results from modeling the
tactile data as a mixture of Gaussians. Bringing the pieces
together, we are able to demonstrate an expected localization
accuracy of less than0.2 inches using a combination of
proprioceptive information and load-based tactile information.
The practical advantages of the approach are illustrated inthe
context of two insertion tasks (see Figures 13 and 14). This
paper is an expanded and more complete review of this work
relative to [5].

A. Related Work

This paper is one of the first to consider the problem of
tactile state estimation while manipulating a flexible material.
Nevertheless, there is a large body of relevant prior work.
The problem of localizing inflexible objects using tactile
information has received considerable attention from a number
of different intellectual directions. An early approach considers
the problem of localizing an object with unknown object
shape parameters by fitting contact position and surface normal
measurements to a model [6], [7]. Noting that object shape is
known in many practical situations, Jia and Erdmann propose
an application of observability theory that estimates the contact
position and pose of a known object when single point contact
is made [8]. Okamura and Cutkosky take a geometric approach
to localizing surface features on inflexible objects using haptic
exploration [9]. Although the geometric nature of this work
makes it inapplicable to localization in flexible materials, there
are important similarities to our current work.

Recently, there has been an effort to apply Bayesian filtering
to the problem of localizing inelastic objects through touch
interactions. In [10], Petrovskayaet. al. localize an inelastic
object by making repeated contact with a single end-effector.
In this work, localization occurred in the space of spatial
object poses (6 DOFs) using a particle filter and a maximum
likelihood measurement model. Gadeyne and Bruyninckx take
a similar approach where Markov localization is applied to
the problem of localizing the planar pose (3 DOFs) of an
inelastic fixtured part based on tactile measurements [11].In
this work, the measurement model incorporated a numerical
integration step. Corcoran and Platt found an analytic solution
to the above integration for polyhedral objects and use it
to realize spatial object localization using contact position
information [12]. In related work, Chhatpar and Branicky
apply particle filtering to the problem of localizing the pose
of a peg with respect to a hole [13]. In contrast to the
above, their work samples measurements from across the state
space on-line rather than creating an analytical model for the
measurement distribution. This approach is extended to more
general manipulation problems [14].

Much flexible material manipulation literature focuses on
knot tying, and surgical suturing in particular. Remdeet al.
perform a comprehensive analysis of the contact states and fea-
sible transitions that can occur for a deformable linear object
(a rope or cable) [15]. As pointed out in [16], it is not strictly
necessary to model the material compliance in order to plan

Fig. 2. Robonaut 2 hand. Note the three tactile sensor caps oneach finger
(one cap on each phalange).

knots [17], [18]. However, planning techniques that take the
flexible dynamics into account have more broad applications.
One way of incorporating better material models into the plan-
ning process is to calculate low-energy states for the material
given end-point configurations and plan accordingly [2], [19],
[20]. Wakamatsu and Hirai consider the more general problem
of manipulation planning for arbitrary flexible objects [21].
However, this work assumes linear strain dynamics. Tian and
Jia propose a non-parametric extension of the above linear
model [16]. Their work also considers the grasping problem
where the ramifications of object deformation on grasp point
selection is explicitly considered.

Another related body of work is concerned with flexible
materials modeling. This is important in computer graphicsas
well as robotics applications. A standard approach models the
deformable object using a set of small masses that interact
with each other through springs or other potential function
elements [22], [23], [3], [24]. For example, Burionet al. find
mass-spring parameters that generate model deformations that
best fit a series of mechanical tests performed on the object
using a particle filter [3]. Morris and Salisbury find parameters
for a potential function-based model that are damped and
generate object geometries closest to what is observed [24].

II. SYSTEM AND SETUP

This section introduces the finger tactile sensors and finger
torque control and then describes the interaction scenario.

A. Tactile sensors

The tactile sensors used in this work are composed of
strain gauges mounted in the load path between the contact
surfaces of the Robonaut 2 (R2) finger and the finger structure
through which contact loads are reacted to the ground [25].
Figure 2 shows the basic structure of the hand. Notice that
each finger has three “contact caps” on it – one cap on
each phalange. Each of these caps is mounted to a spring
element instrumented with strain gauges. Strain gauges are
small patches of silicone or metal that measure mechanical



(a) Bump in flexible plastic (b) Snap in cloth (c) Grommet in cloth

Fig. 4. The three features embedded in flexible materials used in the experiments.

Fig. 3. Internals of the tactile load cell used in the experiments. The “S”
shaped material is the spring element to which micro-scale strain gauges
(shown as small “U”s) are attached.

strain and are affixed to surfaces on the load path. When a
load is applied to an elastic material (aluminum or steel, for
example), the load causes elastic deformations in the material
that can be measured using strain gauges. The principle of
operation is that when the R2 hand touches something (for
example, refer to Figure 1), it is these caps that actually make
contact with the environment. When this occurs, the sensors
in the spring element measure the load.

Figure 3 illustrates the spring element itself. Notice thatit
has a roughly cylindrical shape that facilitates mounting on
the human-sized R2 finger. The spring element is grounded
to the robot finger at the edges of the cylinder and attached
to the contact shell by a center plate with two screw holes.
The spring element roughly forms an “S” shape that includes
four bars. Each of the four bars is instrumented with four
strain gauges that comprise two extension-compression pairs
that measure two orthogonal bending moments. The extension-
compression sensor pair is comprised of two identical strain
gauges mounted on opposite sides of the bar and wired to form
a voltage divider such that the resultant voltage is proportional
to the ratio between the strain in one sensor and the strain in
both [26]. Since each pair of strain gauges produces one analog
signal, each tactile sensor produces a total of eight signals.
The shape of the spring element is such that any load applied
to the contact cap results in a unique measurement. Based
on an analysis of the mechanics of contact, it can be shown
that such a sensor configuration contains sufficient information
to localize a single point of contact with arbitrary precision
anywhere on the convex contact cap [27]. In order to minimize
the effects of uncontrolled variables such as temperature or
mechanical shifts in the sensor itself, the vector of signals
produced by a single sensor is normalized on every timestep.

B. Finger torque and compliance control

Since the R2 hand is extrinsically actuated (it is driven by
motors located in the forearm), it is necessary to actuate the
tendons in order to realize joint torques. The key relationship
between tendon velocities and joint velocities is:

ẋ = PT

(

q̇

θ̇

)

,

where ẋ is the vector of tendon velocities,̇θ is the internal
tendon velocity,q is the vector a finger joint positions,q̇ is the
vector of joint velocities, andP is full rank and non-diagonal
in general. Following [28], our control law calculates a desired
tendon position,xd, that decouples joint velocities:

xd = x− kdẋ+ PTKp(τd − Pf),

wherex is tendon positions,f is the measured tendon tensions,
Kd andKp andkd are the PD parameters of the torque con-
troller. This control law moves the tendons so as to maintain
the desired torque,τd. If a joint stiffness is desired rather
than a contact torque, the desired torque is a function of joint
position:τd = K(qd − q). Finger joint positions are measured
using hall sensors on the output of each joint. The arm joint
positions are measured using accurate optical absolute position
sensors. All the joint position sensors are calibrated relatively
accurately. Hand position estimates relative to the base frame
are accurate to within0.25 inches. Fingertip position estimates
relative to the palm are accurate to within hundredths of an
inch.

C. Interaction scenario

The key idea of this work is to interact with the flexible
material such that it deforms in repeatable ways. As a result,
it is unnecessary to model all possible deformations of the
material. We only need to model the particular interaction
scenario illustrated in Figures 1 and 5. In this scenario, the
flexible material loosely hangs from a test rig such that it
swings freely with respect to the robot in different direc-
tions. The robot grasps the material between its thumb and
forefingers (index and middle fingers). The forefingers apply
a constant light squeezing force against the thumb which is
held fixed. Then, the robot pulls its hand away from the fixed
point in the direction of the arrow illustrated in Figure 5.
We will refer to a single pull as a “swipe.” Each swipe
covers a distance of typically two or three inches at a speed



(a) Interaction scenario
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(b) Sample points (c) Proprioceptive data (d) Tactile data

Fig. 5. Illustration of the training phase. (a) illustratesthe robot hand performing a “swipe” from left to right. (b) shows the state locations of the roughly25000
state-measurement sample pairs collected during training over a 2.25× 2.25 inch patch on the surface of the material. (c) illustrates a single proprioceptive
signal (distance between the middle fingertip and the thumb, color variation: 0.01 to 0.97 inches) over the state space. (d)illustrates a single tactile sensor
signal (from the middle fingertip force sensor, color variation: -0.457 to +0.351 volts) over the state space.

of approximately1.3 inches per second. During each swipe,
the thumb is commanded to hold a constant position with
large stiffnesses in its four joints. In the index and middle
fingers, the adduction/abduction and the medial/distal joints
are commanded to hold fixed positions with large stiffnesses.
The proximal finger joints apply a constant closing torque
such that each finger pushes with approximately0.75 Newtons
against the thumb in the direction of closing (see Figure 5(a)).

As the hand pulls, the material is squeezed between the
thumb and fingers so that it complies with the hand in
a particular and repeatable way. As the fingers move over
the material, proprioceptive and tactile sensor measurements
respond to the mechanical stiffness characteristics of the
material. Haptic features such as buttons or grommets have
mechanical properties different from that of the surrounding
material. As a result, we expect to be able to localize these
features based on sensor measurements. The evaluations in
this paper are performed for the three features illustratedin
Figure 4. The bump in Figure 4(a) is used to fixture the flexible
plastic in the context of a factory assembly task. The snap in
Figure 4(b) and the grommet in Figure 4(c) are embedded in
a simulated thermal blanket that is an important part of many
extra-vehicle NASA tasks.

III. L OCALIZATION

When the robot interacts with a haptic feature such as
a button or grommet, it “feels” a characteristic signal that
enables it to localize the feature. We consider two types of
sensor information:proprioceptiveinformation that measures
finger displacements and force sensor information that directly
senses the magnitude and direction of loads applied to the
finger.

A. Training Phase

During training, a haptic “map” is created that associates
each point in state space with a measurement. Since the
material is squeezed between the thumb and forefingers, we
know already that it is touching the thumb and that it is locally
tangent to the finger and thumb surfaces at the point of contact.

The remaining dimensions of uncertainty describe where con-
tact occurs on the surface of the material. We parametrize the
surface of the material by a local two-dimensional coordinate
frame. State is defined to be the location of the thumb tip
in this coordinate frame. During training, a corpus of data is
collected that pairs state with proprioceptive and force sensor
measurements in the context of the swipe interaction described
earlier. In order to obtain accurate measurements of state,
the material is held in a jig so that it is roughly immobile
with respect to the base frame. Then, data is collected by
systematically by performing a series of swipes so that the
entire region of interest has been “scanned.”

Figures 5(b), 5(c), and 5(d) illustrate data collected dur-
ing a training session. The data corpus represented consists
of approximately25000 state-measurement pairs sampled in
the locations indicated in Figure 5(b) over approximately a
2.25 × 2.25 inch patch in the neighborhood of the plastic
bump. The data was collected by performing 6 “scans” of the
entire region. Each scan consists of 23 swipes with each swipe
separated from its neighbors by approximately0.1 inches. In
principle, one would expect this procedure to generate samples
in a series of parallel lines0.1 inches apart. However, stiction,
Coriolis, and inertial effects in the robot arm joints as well
as forces generated by interaction with the material cause
the variation evident in Figure 5(b). Figures 5(c) and 5(d)
illustrate an example of a proprioceptive signal and a force
sensor signal sampled from a nearest neighbor function on a
regularly spaced grid defined over the2.25× 2.25 inch patch
where each grid cell is a0.02×0.02 inch square. Each point in
the grid takes the measurement value of the nearest sample in
the corpus. Figure 5(c) shows the distance between the thumb
and middle finger. The measurement values range between
0.01 inches (blue) and0.97 inches (red). Figure 5(d) shows
the response of one of the tactile sensor signals in the middle
finger. The measurement values range between−0.457 volts
(blue) and0.351 volts (red). As one might expect, the two
types of measurements are aligned. The same forces that cause
the thumb and middle finger to separate as they travel over the
bump are also recorded by the force sensor. Notice that the
proprioceptive data (Figure 5(c)) has the largest responsewhen



the middle finger is on top of the bump while the tactile data
(Figure 5(d)) has the greatest response on the edges of the
bump.

Figures 5(c) and (d) are characterized by variations in
measurements that form horizontal lines. Comparison with
Figure 5(b) indicates that these lines are associated with the
geometry of the scan process during training. If two swipes
that are performed nearby to each other at different times
have slightly different measurement responses, then this is
manifested by a line. There are two main sources for this
variation: measurement noise and errors and shifts in the
flexible material during training. Sensor error is caused by
small variations in the response of the finger tension sensors
that cause the finger torque controller to produce slightly
different torques, thereby squeezing the material slightly more
or less tightly. In addition, sensor error is also caused by
variations in the fingertip load cell. This paper models both
of the above sources of sensor error as independent and
identically distributed (iid) Gaussian noise.

The other main source of variation in the training data is
shifts in the position of the flexible material during training.
Our training procedure is to fixture the material such that the
position of the thumb in the base frame is roughly proportional
to state (the position of the thumb in the coordinate frame of
the material). If the material is perfectly fixtured with respect
to the jig (which is itself fixtured with respect to the ground),
then the system should make the same measurements in the
same state on average. However, we have observed some
degree of uncontrolled shifts in the material during training.
Based on our observations, these shifts are stochastic in some
regions of state space and relatively deterministic in others.
For example, when a finger swipes near the edge of a feature,
it will stochastically either remain on top of the feature or
it will slide off (this effect can be observed on the top edge
of the bump in Figure 5(c) where there are a few relatively
pronounced lines). Whether the fingers slides off or not is
stochastic. However, this particular effect only occurs onthe
edges of the features – in the middle of a bump or in a
featureless region of state space, state measurements are likely
to be less noisy. This paper handles the possibility of state
estimation errors in the training set by modeling the likelihood
of a measurement in terms of a neighborhood of states in
the training set surrounding the query state. In Section III-C
and III-D, we model this likelihood with a Gaussian fit to
the measurements from the training set neighborhood. In
Section IV, we model the likelihood as a mixture of Gaussians
fit to measurements from the neighborhood.

B. Bayesian filtering

The problem of localizing an object through touch is similar
to mobile robot localization. Both are tracking problems char-
acterized by non-zero process noise (i.e. noisy transition dy-
namics) and observation noise. Whereas wheel slippage causes
process noise in mobile robot localization, the unpredictable
shifting or deformation of the material causes process noise
in our problem. Both problems are characterized by noisy
sensor information. Given these similarities, Bayesian filtering
is appropriate to flexible material manipulation.

The goal of Bayesian filtering is to track the state of a
stochastic system as it changes. It is assumed that state,x,
is Markov. At every time step, the measurements,z, depend
only on the current state. Starting with a prior distribution over
state,P (x0), Bayesian filtering recursively updates a posterior
distribution,P (xt|z2:t, u1:t−1), wherext is the state at time
t andz2:t = {z2, . . . , zt} is the set of measurements between
time 2 and time t. The update to the posterior (also called
the “belief state”) is accomplished in two steps. First, the
prediction step updates the distribution by applying a system
model:

P (xt|z2:t−1, u1:t−1)

=

∫

P (xt|xt−1, ut−1)P (xt−1|z2:t−1, u1:t−2)dxt−1. (1)

In the second step, the posterior distribution is updated in
proportion to the likelihood of having generated the observed
measurements,zt:

P (xt|z2:t, u1:t−1) =
P (zt|xt)P (xt|z2:t−1, u1:t−1)

P (zt|z2:t−1)
. (2)

Equations 1 and 2 constitute an optimal solution to the
problem of tracking state in a Markov system. However,
they ignore the question of how the posterior distribution
is represented. Two popular solutions to this problem are
the Kalman filter and the particle filter. The Kalman filter
is optimal, but makes strict (linear system, Gaussian noise)
assumptions regarding the system and measurement models.
Another alternative, the particle filter, does not make these
restrictive assumptions. However, it can fail when the particle
sample set does not estimate the posterior distribution with
sufficient accuracy.

The experiments in this paper were all performed using the
standard sample importance resampling (SIR) version of the
particle filter [29] using a75-particle sample set. At each time
step in the SIR particle filter, the process update (Equation1) is
implemented by sampling from the posterior distribution over
states conditioned on action. We assume a Gaussian motion
model:

P (xt+1|ut) = N(x; f(xt, ut), Q), (3)

wherext+1 = f(xt, ut) denotes the nominal process dynamics
andQ is the covariance of the process noise. The measurement
update (Equation 2) is implemented by weighting each of the
particles proportional to the measurement likelihood. In order
to prevent the sample set from collapsing at one of the modes
of the posterior distribution,13 percent of the particles are
chosen uniformly randomly at each time step.

C. Proprioceptive measurements

Bayesian filtering can be used to perform localization using
proprioceptive information alone. We encode proprioceptive
information in terms of the pairwise distances between the
three fingers. Recall that during interaction with the material,
only the proximal flexion joints in the index and middle fingers
are under torque control. The rest of the joints in the hand
are commanded to hold fixed positions with a high stiffness.
As a result, there are no more than two dimensions of finger



(a) Index/middle distance (b) Index/thumb distance (c) Middle/thumb distance
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Fig. 6. Relative finger positions as a function of palm position. Color denotes the magnitude of each pairwise distance with red indicating a large distance
and dark blue indicating a small distance. (a) shows the distance between the tips of the index and middle fingers (color variation: 0.01 – 0.97 inches); (b)
shows the same for the index finger and thumb (color variation: 0.04 – 0.93 inches); (c) shows the same for the middle finger and thumb (color variation:
0.09 – 0.96 inches). (d) illustrates average localization performance using only pairwise distance measurements.

position variation. These two dimensions are represented to
the system in terms of the three pairwise distances. Although
this is a redundant representation, the extra data helps average
out the sensor and state estimation error in the training set
described in Section III-A.

During the measurement update, the particle filter weights
each particle by the likelihood of the measurements. The
likelihood of a proprioceptive measurement,zd, given that
the system is in statex is modeled by a locally-weighted
Gaussian distribution defined with respect to thek states
nearest (Euclidean distance)x,

P (zd|x) = N (zd; ẑd(x),Σd(x)) ,

whereN (x;µ,Σ) denotes the Gaussian pdf overx with mean,
µ, and covariance,Σ. The mean is

ẑd(x) =
1

k

∑

xi∈Nk(x)

zd(xi), (4)

wherezd(x) denotes the distance measurement associated with
statex in the training set, andNk(x) = {x1, . . . , xk} denotes
the set ofk states nearest (Euclidean distance) tox. The
covariance is

Σd(x) =
1

k

∑

xi∈Nk(x)

(zd(xi)− ẑd) (zd(xi)− ẑd)
T
. (5)

Notice that we are not fitting a measurement function with
constant measurement noise. At a query point, our model
estimates both the mean and covariance parameters of the
Gaussian based on a local neighborhood of data points in
the training set. This model incorporates state uncertainty
in the training set. The state space uncertainty projects into
the measurement space. In regions of state space where the
average gradient of the measurement function with respect
to state is large, Equation 5 calculates a large covariance.
In contrast, the locally weighted sample covariance in a
region where all neighboring states have the same expected
measurement should be similar to the underlying measurement
noise.

Figure 6(a) through (c) shows the neighborhood means for
the three pairwise distances as a function of state for the plastic
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Fig. 7. Comparison of average localization performance for the three flexible
materials shown in Figure 4 when only proprioceptive information is used.
Average performance for the flexible bump is in blue, the snap isgreen, and
the grommet is in black. Results are aligned with feature location.

bump training set. As in Figure 5(c) and (d), each of these
images is sampled over a grid covering a2.25 × 2.25 inch
area with each grid cell0.02 inches on a side. The color
denotes the magnitude of the pairwise distance averaged over
a local neighborhood of30 nearest neighbors (Equation 4).
Figure 6(a) through (c) can be understood intuitively. Either
the index finger or the middle finger travel over the bump.
When a finger crosses the bump, the bump pushes it away from
the thumb. At rest, the middle finger is raised slightly above
the index finger. When the middle finger crosses the bump, it
moves away from both the index finger and the thumb. When
the index finger crosses the bump, it moves away from the
thumb and towards the middle finger.

The localization performance of this model using the three
pairwise distance measurements for a plastic bump dataset is
illustrated in Figure 6(d). The plot shows localization error
averaged over 20 test swipes in an additional test scan of the
material. As in training, the test swipes comprising the scan
are approximately0.1 inches apart over approximately a2.25
square inch area. Error is equal to the L2 distance between
weighted average particle location (the mean of the sampled
distribution) and the ground truth state measured during test-



ing. Figure 6(d) shows a fast initial drop in localization error
that is caused by the system immediately realizing that it isnot
on top of the bump. After this, localization error begins to fall
again between−12.5 and−13. This is exactly the point where
the thumb-index distance begins to change significantly in
Figure 6(b). Localization error reaches its minimum between
−13.5 and −14 inches. Since the three pairwise distances
also reach their maxima in this region, we know that error
is minimized when one finger is completely on top of the
bump. Average localization error briefly reaches a minimum
near0.25 inches. However, since this low error estimate does
not persist, it may be difficult to assure that the particle filter
converges with a low error estimate.

Figure 7 shows a comparison with average localization
performance for the snap (green) and the grommet (black).
Training data was collected for these two other features simi-
larly to how the plastic bump data was collected as described
in Section III-A. The data are aligned with the center of
the feature at zero. Localization error for all three features
becomes smallest just before reaching the center of the feature.
This suggests that the most relevant measurements are made
as the fingers are just beginning to move over the feature.
Notice that as the fingers move past the center of the feature,
localization error for the bump and snap gets worse while
error on the snap remains roughly constant. This suggests
that the proprioceptive measurements made after reaching
the feature center are less informative for the bump and
grommet but continue to be informative for the snap. When
the measurements are not informative, notice that our Gaussian
noise assumption (Equation 3) causes a gradual increase in
the entropy of the distribution, leading to an increase in the
expected error. But why are the measurements less informative
for the bump and the grommet but not for the snap? Since
the grommet is relatively narrow compared with the snap and
bump, the fingers quickly leave the surface of the grommet
and measurement informativeness drops. For the bump, once
the fingers are on top of it, the proprioceptive measurements
are equally consistent with any other location on top of the
bump. Therefore, there is some flexibility for motion error
to integrate once the fingers reach the top of the bump. In
contrast to the grommet and the bump, the snap is both large
and haptically informative over its entire extent. Measurements
continue to be informative for the entire time while the fingers
are touching the snap.

D. Tactile measurements

The fact that it is possible to achieve localization accuracy
of approximately0.4 inches using only proprioceptive infor-
mation suggests that it should be possible to do very well if
tactile data is incorporated as well. The fingertip tactile sensors
provide more descriptive information – although our load-
based sensors are still limited because they only provide force
and torque information rather than direct information regarding
the contours or texture of the surface. As was the case for
the proprioceptive measurements, the tactile measurements
are also subject to sensor noise that will be assumed to be
Gaussian. In addition, the tactile data measurement model
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Fig. 9. Comparison of average localization performance usingproprioceptive
measurements alone (the dotted blue line) and average localization perfor-
mance when both proprioceptive and tactile measurements are used (the black
line).

must also take into account the state estimate noise caused
by shifts in the flexible material. As a result, we model the
tactile data as a single Gaussian defined over locally-weighted
sample moments:

P (zt|x) = N (zt; ẑt(x),Σt(x)) .

The mean is,

ẑt(x) =
1

k

∑

xi∈Nk(x)

zt(xi), (6)

wherezt(x) is a function that evaluates to the vector of tactile
signals for statex in the training set andNk(x) is the set of
k = 30 nearest states. The covariance over the local region is:

Σt(x) =
1

k

∑

xi∈Nk(x)

(zt(x)− ẑt(x)) (zt(x)− ẑt(x))
T
. (7)

Assuming that the proprioceptive and tactile data is condition-
ally independent given state, the joint likelihood is the product:

P (z|x) = P (zd|x)P (zt|x). (8)

The tactile data can be visualized using a singular value
decomposition. We perform the analysis for a grid with0.02
square inch cells over a2.25×2.25 square inch patch (the same
patch illustrated in Figures 5 and 6). Letx = (x1, . . . , xn)

T

be the vector ofn = 24802 cells. Let ẑit(x) be ith element
of ẑt(x). Let ẑit(x) = (ẑit(x1), . . . , ẑ

i
t(xn))

T . Form measure-
ments, the dimensionality of the information contained in the
smoothed measurements is the rank of:

Γ = (ẑ1t (x), . . . , ẑ
m
t (x)).

For the flexible bump training data, the middle fingertip sensor
produced seven dimensions of tactile data. The singular values
of Γ for this 7 × 24802 matrix are1.9361, 1.2055, 1.0716,
0.7418, 0.2446, 0.1883, and0.0664. The first four eigenvectors
are illustrated in Figure 8. A couple of points bear mentioning.
First, in contrast to the proprioceptive information (Figure 6(a)
through (c)), most of the sensor response occurs on the edges
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Fig. 8. First four eigenvectors of the tactile data.

of the bump. Furthermore, the first four eigenvectors respond
differently to different parts of the edge of the bump. Using
only the first four eigenvectors, it should be possible to do a
good job localizing where along the edge of the bump contact
with the finger occurs. The plot shows localization error

Figure 9 compares the performance of Bayesian localization
using a combination of proprioceptive and tactile data (the
solid line) with the performance using just the proprioceptive
data (the blue dotted line – same as in Figure 6(d)). The
particle filter parameters as well as the flexible plastic bump
training and test data sets are the same as those used in
Section III-C. As before, these results are averaged over
20 test swipes comprising an additional test scan. Error is
equal to the L2 distance between weighted average particle
location (the mean of the sampled distribution) and the ground
truth state measured during testing. The first thing to notice
about Figure 9 is that incorporating the tactile data definitely
improves localization accuracy – especially between−13 and
−13.5 inches. This is consistent with what may be observed
by comparing Figures 6 and 8: the tactile data has a larger
response earlier than the proprioceptive data. When only
proprioceptive information is used, the fingertips must actually
be displaced by the feature before localization is possible.
The tactile information allows localization to occur while
the forces that cause the fingertip displacements are acting.
The other notable feature of Figure 9 is that localization
performance is actually worse between−13.95 and −14.25
inches. This is counter-intuitive because in the Bayes optimal
setting, additional data should only improve the estimate.This
suggests that below−13.95 inches, the tactile data likelihood
model is inaccurate and causes localization errors. The next
section shows that a more accurate tactile measurement model
can reduce the impact of this effect.

IV. GAUSSIAN MIXTURE MEASUREMENT MODEL

Until this point, we have modeled state uncertainty in the
training set by fitting a single Gaussian to the measurements
associated with a neighborhood of training set states aboutthe
query point. However, Figure 10 illustrates that this uncertainty
is not always Gaussian. Figure 10 shows measurements from
one tactile signal in the middle fingertip associated with the
k = 30 nearest states in the training set for a particular
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Fig. 10. Measurements associated with the30 nearest states for a trajectory
through state space.

trajectory in state space. In this trajectory, the middle finger
skirts the edge of the bump. For states less than−13.2, there is
little variance among the signals of the30 neighbors. However,
during the portion of the trajectory where the finger interacts
with the bump, there is a clear bimodal distribution over
signals within the neighborhood. Sometimes the finger slips
off of the bump and produces the lower trajectory in Figure 10.
Sometimes the finger remains on the bump and produces the
upper trajectory. Clearly a single Gaussian distribution is a
poor fit for this data. Given state uncertainty in the training
set, we need a measurement model that associate some states
with a multimodal measurement distribution.

A number of modeling techniques can be used to fit a
model to a multimodal distribution. A variant of EM could
be used to fit a mixture of Gaussians [30]. Alternatively,
Gaussian process regression might be used to fit a non-
parametric model [30], [31]. However, this paper leaves these
more sophisticated models to future work. Currently, we take a
lazy-learning approach that models the multimodal distribution
as a Gaussian mixture defined directly over the training data.
In particular, we model the likelihood of a tactile measurement
vector,zt, as:

P (zt|x) = η
∑

xi∈Dx

φ(xi)N (zt; zt(xi),Σt) , (9)

whereDx is the set of all states in the training data set,zt(x)
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Fig. 11. Performance of the Gaussian mixture measurement model averaged
over a test scan consisting of 20 swipes. The solid line in (a)illustrates local-
ization error on the plastic bump for the mixture of Gaussians measurement
model. The dotted line shows average localization error for the single Gaussian
model (repeated from Figure 9). (b) compares the average performance for the
plastic bump (the blue line) with the average performance for the snap (the
green line) and the grommet (the black line) using the mixture ofGaussians
measurement model. The centers of the three features are aligned with zero
on the horizontal axis.

is the tactile measurement in the training set corresponding
to statex, Σt is a user-defined spherical variance, andη is
a normalizing constant.φ(xi) is a radial basis function that
penalizes the contributions from elements of the data set with
associated states that are far from the query state:

φ(xi) = N (xi|x,Σx) ,

whereΣx is another user-defined parameter.
The results of incorporating this model into Bayesian local-

ization are illustrated in Figure 11. As before, these results are
averaged over 20 test swipes. Error is equal to the L2 distance
between weighted average particle location (the mean of the
sampled distribution) and the ground truth state measured
during testing. This version of localization is identical with
that used in Section III-D except that the likelihood of tactile
measurements,P (zt|x) in Equation 8, is modeled as the
Gaussian mixture. Figure 11(a) compares the performance of
the Gaussian mixture version of localization (the solid line)
with the performance of the single Gaussian model (the dotted
blue line) from Figure 9. Just as localization performance was
improved by incorporating tactile information in additionto

proprioceptive information, performance is again improved by
adopting the Gaussian mixture model over a single Gaussian
model. Correct localization occurs earlier than it did withthe
single Gaussian model and there is less integration of error
once the fingertips move off the edge of the bump.

Figure 11(b) compares average localization performance for
the flexible plastic bump with the average performance for the
snap and the grommet. Comparing with Figure 7, the mixture
of Gaussians model improves localization performance for all
three features. However, notice that Figure 11(b) indicates that
the mixture of Gaussians is capable of localizing the plastic
bump and the snap before the fingers actually touch the feature
(the center of the feature is at the origin of the coordinate
frame). This is not strictly a result of overfitting to the training
data because these results are for a separate test dataset.
The early localization is a result of repeatable information
content in the “featureless” region of the flexible material
prior to contacting the feature. Looking at Figure 8, noticethat
there is subtle information content prior to touching the bump
(otherwise, we would expect the non-bump measurements to
be perfectly uniform). This subtle information does not exist
in the proprioceptive information alone (Figure 6). From the
perspective of contact mechanics, we hypothesize that the
stiffness and surface properties of the flexible plastic have
slight variations over the “featureless” region as a function of
the distance of the contact point to the edge of the plastic,
the position of the contact with respect to the bump, or
differences in the surface properties of the plastic. This “pre-
feature localization” is an advantage as long as the material
properties that are being used are repeatable. However, it
intuitively seems dangerous to localize based on this subtle
variation instead of waiting until the fingers interact withthe
feature. Although we have found this pre-feature model to be
repeatable with respect to data collected on different days, we
expect that over longer time horizons, this pre-feature tactile
variation is not repeatable. As a result, we pursue the remedy
described in the next section.

A. Modeling off-feature states as a single state

The long time horizon overfitting problem can be addressed
by dividing state space in the training set into into anon-
featureregion and anoff-featureregion that are defined man-
ually. For all states in the off-feature region, the measurement
likelihood is modeled by a single likelihood function that mod-
els data taken from the entire region. This prevents the filter
from differentiating between off-feature states. Essentially, we
are lumping all off-feature state hypotheses into a single null
hypothesis with a single likelihood model.

Consider the case of two tactile sensors (for example,
the index and middle finger tips) with positionsa and b

and corresponding measurement vectorszat and zbt such that
zt = {zat , z

b
t}. Whereas in earlier sections, the measure-

ment likelihood was conditioned on the palm position, now
marginalize over the two sensor positions:

P (zat , z
b
t |x) =

∑

a,b

P (zat |a)P (zbt |b)P (a, b|x). (10)



−1.5 −1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Relative position (inches)

E
rr

or
 m

ag
ni

tu
de

 (
in

ch
es

)

(a)

−1.5 −1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Relative position (inches)

A
ve

ra
ge

 v
ar

ia
nc

e 
(in

ch
es

)

(b)

Fig. 12. Performance of the on-feature/off-feature approach (solid lines) com-
pared with the undifferentiated mixture of Gaussians approach (dotted lines).
The solid lines show the performance of the featureless averaging method.
The dashed lines show the Gaussian mixture performance for comparison. (a)
shows average localization error. (b) shows average localization variance. The
origin on the horizontal axis denotes the center of the feature.

Define functions,A(x) andB(x), that evaluate to the position
of sensorsa and b, respectively, when the palm is atx.
ApproximateP (a, b|x) to be1 whena ∈ A(x) andb ∈ B(x)
and zero otherwise. Then, Equation 10 becomes:

P (zt|x) =
∑

(a,b)∈A(x)×B(x)

P (zat |a)P (zbt |b). (11)

If a is in the on-feature region, then we estimateP (zai |a) as
before using Equation 9. Otherwise, we estimate:

P (zai |a) = N (zai |ẑoff ,Σoff ), (12)

where ẑoff and Σoff are the sample mean and covariance
taken over all points in the off-feature region.

Figure 12 illustrates the results of aggregating off-feature
states. These results were obtained using the same plastic
bump dataset that was used to produce the results in Fig-
ure 11. The solid line in Figure 12(a) shows the error for
the on-feature/off-feature approach averaged over a test scan
comprised of 20 swipes. As before, error is equal to the
L2 distance between weighted average particle location (the
mean of the sampled distribution) and the ground truth state
measured during testing. The dashed line shows error for our
previous approach reproduced from Figure 11. As expected,

this new model does not localize the feature before the fingers
come into contact with it. Figure 12(b) shows variance in the
particle set averaged over the 20 test swipes. The new model
has a high variance that persists until the fingers come into
contact with the feature at approximately0.5 inches prior to
the bump center (the bump has approximately a one inch
outer diameter). From a practical perspective, the decrease
in variance when the fingers contact the feature is useful
for signaling that the localization system has reached the
on-feature region and probably has a good state estimate.
Essentially, this on-feature/off-feature approach transforms the
continuous state estimation problem into a hybrid estimation
problem where the hypothesis space consists of the space of
on-feature states and the binary possibility that the system is
in an off-feature state. The likelihood of the binary off-feature
hypothesis is the marginal likelihood of all particles in the off
feature region.

B. Applications

The main motivation for using touch sensing to local-
ize haptic features is that it can improve the robustness of
manipulation tasks involving soft materials. This subsection
illustrates this advantage in the context of two tasks: a plastic
manipulation task and a grommet insertion task. The objective
of the plastic manipulation task is to locate a bump in the
flexible plastic using touch sensing and move the tip of the
thumb inside the recess of the bump. The objective of the
grommet insertion task is to localize a grommet using touch
sensing and insert the grommet onto a fastener. Both of these
insertion tasks are part of larger assembly tasks that are
common in factory settings.

We applied our localization technique to the thumb-in-
bump task (illustrated in Figure 13). Before localizing the
bump, it was assumed that the bump position was known
to within a square region two inches on a side. Given this
approximate location, the robot reached to the nominal bump
position and compliantly closed its fingers around the plastic
using the interaction procedure described in Section II-C.
Then the robot performed a swipe. During the swipe, the
bump was localized using the single-Gaussian model of the
proprioceptive information, the mixture of Gaussians model
of the tactile information, and the separate modeling of the
featureless regions (all the techniques proposed in this section).
If, at any point during filtering, the marginal likelihood of
the measurements exceeded a given threshold, then filtering
stopped and the thumb was inserted into the bump. Otherwise,
an additional swipe was performed. The insertion itself was
performed using a hand-coded procedure, parametrized by the
maximum likelihood bump location, that changed all finger
joints to stiffness mode, moved the thumb into the bump,
and simultaneously gripped the plastic from the other side
using the fingers. The diameter of the interior of the bump
was approximately0.85 inches. The diameter of the thumb
tip was approximately0.65 inches. In order to successfully
insert the thumb into the bump, the localization error couldbe
no greater than approximately0.35 inches. Any greater error
would cause the thumb to “pop” out of the bump during the
insertion.
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Fig. 13. Illustration of the thumb insertion task. The objective is to insert the thumb into the recessed plastic bump. Frames(a) through (d) illustrate the
swipe. Frames (e) and (f) illustrate the thumb insertion.

(a) (b) (c) (d) (e) (f)

Fig. 14. Illustration of the grommet insertion task. Frames (a)through (e) illustrate the swipe. Frame (f) illustrates the insertion.

While we do not have quantitative statistics on the success
and failure rate of this insertion task, it was qualitatively
very successful. Almost all failures were caused by sensor
calibration errors. Given properly calibrated finger tension
sensors and tactile sensors, this thumb insertion procedure
succeeded at least95 percent of the times attempted. We
successfully executed this thumb insertion procedure more
than 100 times. As a result of the sensitivity of the proce-
dure to calibration errors, we developed a short calibration
procedure that was performed before performing localization
experiments or demonstrations. This procedure automatically
relaxes all finger tendons, resets the tension affine offsets, and
recalculates tendon gains after re-tensioning [28].

We also applied our localization technique to a grommet
insertion task. The objective was to localize a grommet embed-
ded in fabric that was placed in the robot hand in an unknown
position, grasp the grommet, and insert the grommet onto a
fastener. (This was actually aquarter turn fastener that must
be turned after insertion to lock the fabric in place. However,
in this paper we ignore the turning part and just perform the
insertion.) The grommet was placed in the robot hand in an
unknown (but constrained to the region of states from which
the swipe would cause the fingers to pass over the bump) con-
figuration (Figure 14(a)). Then, the hand compliantly closed
around the fabric and performed a swipe (Figure 14(b-d)).
As in the bump insertion experiment, the localization tech-
niques proposed in this section were applied. If, at any point
during filtering, the marginal likelihood of the measurements
exceeded a given threshold, filtering stopped. If localization
succeeded, the robot gripped the fabric tightly (Figure 14(e))
and moved to an insertion location (Figure 14(f)) calculated
using the maximum likelihood grommet position and the

fastener location that is assumed to be known (we assume
that the fastener is fixtured to a large object that can be
localized using other methods.) The insertion was performed
under Cartesian stiffness control with a stiffness center located
at the grip point. This task was much more difficult than the
thumb insertion task because the required tolerances were very
small. In order to successfully insert the grommet, localization
error could be no greater than0.2 inches. Since this is very
close to the expected localization error for the grommet (see
Figure 11(b)), even a small errors in force sensor calibration
caused this task to fail. Compared with the thumb-in-bump
insertion, we executed this task relatively few times (only
approximately20 times). The task was likely to succeed when
executed directly after taking a training data set. However,
our system was subject to sufficient drift in the sensors that
we could not execute successfully on a different day without
taking a new training set.

V. D ISCUSSION

This paper has examined methods of using proprioceptive
and tactile measurements to estimate the position of a feature
(such as a button, snap, or grommet) embedded in a flexible
material such as thin plastic or fabric. We have character-
ized the relative utility of the two types of measurements
with respect to localization performance and shown that they
contain different kinds of information. We have demonstrated
that using both types of information rather than just propri-
oceptive information results in a sizable gain in localization
performance. Given the state estimation errors inherent inour
training mechanism, we have found the tactile measurement
model to be multimodal and proposed a mixture of Gaussians
model that results in an additional improvement in localization



performance. Finally, we have explored two applications ofour
approach that are relevant to manufacturing and space appli-
cations: a flexible plastic manipulation application (Figure 13)
and a grommet insertion application (Figure 14).

Although the study in this paper of localization during
manipulation has been experimental, the conclusions can be
expected to generalize beyond the particular hardware platform
used. Robonaut 2 (R2) is obviously an extremely sophisticated
platform with features that most other robots do not have.
However, only two hardware capabilities are needed in orderto
apply the conclusions from this paper: finger compliance and
tactile sensing. The finger compliance needed can be achieved
using active [26] or passive [32] mechanisms. Furthermore,
miniature load cells (such as the ATI Nano-18) are currently
available for sale that can be used similarly to how we have
used our custom tactile sensors.

The idea of using Bayesian filtering to localize materials
held in a robot hand is attractive. Reproducing in manipulation
the success that Bayesian filtering has had in mobile robot
applications would be a significant and tangible step forward
in manipulation research. However, the approach proposed in
this paper has significant limitations. From an implementation
perspective, we have found that approach is very sensitive
to force sensor calibration errors. Although this sensor error
was not a problem for the thumb-in-bump insertion task
because of the relatively large tolerances, it became more of
a problem for the tight-tolerance grommet insertion task. This
highlights the continuing need for more robust and accurate
force and tactile sensing. From an algorithmic perspective,
the primarily limitation of our approach is that localization
capability does not transfer from one haptic feature to different
haptic features. While features that feel similar to a prototype
may be successfully localized, there is no explicit recognition
that features can be different from the prototype feature while
remaining within a class. For example, there is no explicit
recognition of grommets of different sizes – they are simply
perceived as being either more or less similar to the prototype.
One way to address this problem would be to train the
system on a class of features rather than a single feature. For
example, one might train the system to recognize grommets of
different sizes. However, since our current procedure requires
45 minutes of training time to recognize a single feature, it
would clearly become infeasible to train the system on large
classes of objects in a reasonable period of time. An alternative
approach might be to take a compositional approach where
the system is trained to recognizeparts of a feature rather
than an entire monolithic feature. For example, the system
might be trained to recognize a library of curves with different
curvatures and orientations. Features would be described in
terms of located collections of curves. While this approach
would extend the representational capabilities of this approach,
the challenge would be to identify the relevant atomic shape
primitives.
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