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Robert Platt Jr, Frank Permenter, Joel Pfeiffer

Abstract—Localizing and manipulating features such as but-
tons, snaps, or grommets embedded in fabrics and other flexible
materials is a difficult robotics problem. Approaches that rely
too much on sensing and localization that occurs before touching
the material are likely to fail because the flexible material can
move when the robot actually makes contact. This paper ex-
perimentally explores the possibility of using proprioceptive and
load-based tactile information to localize features embedded in
flexible materials during robot manipulation. In our experiments,
Robonaut 2, a robot with human-like hands and arms, uses
particle filtering to localize features based on proprioceptive
and tactile measurements. Our main contribution is to propose
a method of interacting with flexible materials that reduces
the state space of the interaction by forcing the material to
comply in repeatable ways. Measurements are matched to a
“haptic map”, created during a training phase, that describes
expected measurements as a low-dimensional function of state. o ) ) o
We evaluate localization performance when using proprioceptive Fig- 1. Robonaut 2 hand localizing a bump in a piece of flexitiéeste.
information alone and when tactile data is also available. The
two types of measurements are shown to contain complementary

ol oo s ropose s srs o o Moble robo ocazato i 0 track th posiion of he ot
that offerincreasinglypbetter accuracy. IF:)ianIIy, the paper exploes in the enVIronm_e_m’ the goal ,Of manlpylatlon localizatian i
this localization approach in the context of two flexible materials {0 track the position of the object held in the hand. Also, the
insertion tasks that are important in manufacturing applications. ~ kind of information available from range sensors or landmar
bearing estimates is of a similar complexity to that which
is available from touch sensors. Our basic approach is to
interact with a known object during a controlled trainingaph
Flexible materials manipulation is an important class afhereby a map is created that describes how the material
problems. Many “general assembly” tasks in automobileofact‘feels.” Then, during localization, the touch measurersare
ries that are currently performed by humans involve insigll matched to the map using Bayesian filtering. Many approaches
cables, carpets, and flexible plastics. Similarly, manufang to flexible materials state estimation utilize high-dimensl
clothing, shoes, and other soft goods is labor-intensieabge models of the space of possible material deformations (for
robots are unable to manipulate flexible materials reliablgxample [2], [3]). Instead, a key insight of this paper isttha
Aside from its practical value, studying flexible material$s frequently possible to manipulate a flexible materialtinots
manipulation is interesting for its own reasons becauseymaa way that it always deforms in a certain way. As a result,
existing approaches cannot easily be applied to the probtemit is possible to reduce the dimensionality of the model by
is admittedly possible to manipulate flexible material with assuming that this deformation always takes place. Our work
estimating the state of the interaction once manipulatias happlies this idea to the problem of localizing “haptic featt
begun (for example, see the towel folding work in [1])such as buttons, grommets, or snaps in flexible materials
However, if there is no mechanism for tracking state durin@rough touch.
manipulation, then there is no possibility of reacting to un The details of this approach are explored experimentally
foreseen events. Given that the system is already intatactusing Robonaut 2 [4] for three features embedded in flexible
with the object, it is natural to attempt to use a sense offtougaterials: a bump in flexible plastic, a snap in fabric, and
to track state. a grommet in fabric (see Figure 4). Two types of touch
This paper applies ideas used in mobile robot localization fnformation are considered: proprioceptive measuremghes
manipulation. There is a strong analogy: whereas the goal@nfiguration of a compliant hand during manipulation) and
o . S tactile measurements using load-based sensors. We exgoerim
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I. INTRODUCTION



tained in the tactile data is qualitatively different frotrat in

the proprioceptive data. Finally, we demonstrate an auithti
improvement in performance that results from modeling the
tactile data as a mixture of Gaussians. Bringing the pieces
together, we are able to demonstrate an expected locatizati
accuracy of less tha.2 inches using a combination of
proprioceptive information and load-based tactile infation.

The practical advantages of the approach are illustratéiein
context of two insertion tasks (see Figures 13 and 14). This
paper is an expanded and more complete review of this work
relative to [5].

A. Related Work

This paper is one of the first to consider the problem of
tactile state estimation while manipulating a flexible miale g > Robonaut 2 hand. Note the three tactile sensor cagaan finger
Nevertheless, there is a large body of relevant prior workune cap on each phalange).

The problem of localizing inflexible objects using tactile

information has received considerable attention from alyem

of different intellectual_d_irections. An early approacmsinier_s knots [17], [18]. However, planning techniques that take th
the problem of localizing an object with unknown objecfieyiple dynamics into account have more broad applications
shape parameters by fitting contact position and surfageaior one way of incorporating better material models into thepla
measurements to a model [6], [7]. Noting that object shaperfg process is to calculate low-energy states for the riater
known in many practical situations, Jia and Erdmann PropogRen end-point configurations and plan accordingly [2B][1

an application of observability theory that estimates i&act [20]. Wakamatsu and Hirai consider the more general problem
position and pose of a known object when single point contagt manipulation planning for arbitrary flexible objects [21

is made [8]. Okamura and Cutkosky take a geometric approggBwever, this work assumes linear strain dynamics. Tian and
to localizing surface features on inflexible objects usiagtit  ji5 propose a non-parametric extension of the above linear
exploration [9]. Although the geometric nature of this work, el [16]. Their work also considers the grasping problem
makes it inapplicable to localization in flexible materjaleere \yhere the ramifications of object deformation on grasp point
are important similarities to our current work. selection is explicitly considered.

Recently, there has been an effort to apply Bayesian filierin another related body of work is concerned with flexible
to the problem of localizing inelastic objects through toucmaterials modeling. This is important in computer graplaiss
interactions. In [10], Petrovskayet. al. localize an inelastic \ye|| as robotics applications. A standard approach modiels t
object by making repeated contact with a single end-effectgeformable object using a set of small masses that interact
In this work, localization occurred in the space of spatiglith each other through springs or other potential function
object poses (6 DOFs) using a particle filter and a maximuglements [22], [23], [3], [24]. For example, Buria al. find
likelihood measurement model. Gadeyne and Bruyninckx takgyss-spring parameters that generate model deformatians t
a similar approach where Markov localization is applied tgest fit a series of mechanical tests performed on the object
the problem of localizing the planar pose (3 DOFs) of afising a particle filter [3]. Morris and Salisbury find paragst
inelastic fixtured part based on tactile measurements Ihl]. for a potential function-based model that are damped and

this work, the measurement model incorporated a numerig@nerate object geometries closest to what is observed [24]
integration step. Corcoran and Platt found an analytict&wiu

to the above integration for polyhedral objects and use it Il. SYSTEM AND SETUP
to realize spatial object localization using contact posit
information [12]. In related work, Chhatpar and Branick){0
apply particle filtering to the problem of localizing the pos
of a peg with respect to a hole [13]. In contrast to the )
above, their work samples measurements from across tiee sfat Tactile sensors
space on-line rather than creating an analytical modellfer t The tactile sensors used in this work are composed of
measurement distribution. This approach is extended te@matrain gauges mounted in the load path between the contact
general manipulation problems [14]. surfaces of the Robonaut 2 (R2) finger and the finger structure
Much flexible material manipulation literature focuses othrough which contact loads are reacted to the ground [25].
knot tying, and surgical suturing in particular. Remeteal. Figure 2 shows the basic structure of the hand. Notice that
perform a comprehensive analysis of the contact stateseanad each finger has three “contact caps” on it — one cap on
sible transitions that can occur for a deformable lineaecdbj each phalange. Each of these caps is mounted to a spring
(a rope or cable) [15]. As pointed out in [16], it is not stiyct element instrumented with strain gauges. Strain gauges are
necessary to model the material compliance in order to plamall patches of silicone or metal that measure mechanical

This section introduces the finger tactile sensors and finger
rque control and then describes the interaction scenario
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(a) Bump in flexible plastic (b) Snap in cloth (c) Grommet in cloth

Fig. 4. The three features embedded in flexible materials uséidei experiments.

B. Finger torque and compliance control

Since the R2 hand is extrinsically actuated (it is driven by
motors located in the forearm), it is necessary to actuate th
tendons in order to realize joint torques. The key relatigns
between tendon velocities and joint velocities is:

- (3).

Fig. 3. Internals of the tactile load cell used in the experitaeThe “S” where 4 is the vector of tendon velocitie§ is the internal

shaped material is the spring element to which micro-scalénsgauges . . . LT T

(shown as small “U’s) are attached. tendon vglqmtyg is t_h.e vector a finger joint positions,is the
vector of joint velocities, and is full rank and non-diagonal
in general. Following [28], our control law calculates aides
tendon positiong,, that decouples joint velocities:

strain and are affixed to surfaces on the load path. When a ) "

load is applied to an elastic material (aluminum or steel, fo rq =1z —kqt + P~ Kp(1a — Pf),

example), the load causes elastic deformations in the r""tal'[e{)vheregc is tendon positionsf is the measured tendon tensions,

that can be measured using strain gauges. The principlelgg and K, and k, are the PD parameters of the torque con-

operation is that when the _R_2 hand touches something q%ller. This control law moves the tendons so as to maintain
example, refer to Figure 1), itis these caps that actuallyemay, . yesired torquer,. If a joint stiffness is desired rather

pontact W.'th the environment. When this occurs, the SEeNSQAn a contact torque, the desired torque is a function of joi

in the spring element measure the load. position: 7y = K (g4 — q). Finger joint positions are measured
Figure 3 illustrates the spring element itself. Notice that ysing hall sensors on the output of each joint. The arm joint

has a roughly cylindrical shape that facilitates mountimy Gyositions are measured using accurate optical absoluiopos

the human-sized R2 finger. The spring element is groundgghsors. All the joint position sensors are calibratedtivelsy

to the robot finger at the edges of the cylinder and attachggcyrately. Hand position estimates relative to the basadr

to the contact shell by a center plate with two screw holegre accurate to withif.25 inches. Fingertip position estimates

The spring element roughly forms an “S” shape that includegjative to the palm are accurate to within hundredths of an
four bars. Each of the four bars is instrumented with foypch.

strain gauges that comprise two extension-compressias pai
that measure two orthogonal bending moments. The extension
compression sensor pair is comprised of two identical rstraf-
gauges mounted on opposite sides of the bar and wired to fornThe key idea of this work is to interact with the flexible

a voltage divider such that the resultant voltage is progoal material such that it deforms in repeatable ways. As a result
to the ratio between the strain in one sensor and the strainitins unnecessary to model all possible deformations of the
both [26]. Since each pair of strain gauges produces one@natnaterial. We only need to model the particular interaction
signal, each tactile sensor produces a total of eight sgnacenario illustrated in Figures 1 and 5. In this scenarie, th
The shape of the spring element is such that any load applftekible material loosely hangs from a test rig such that it
to the contact cap results in a unique measurement. Basadngs freely with respect to the robot in different direc-
on an analysis of the mechanics of contact, it can be shotons. The robot grasps the material between its thumb and
that such a sensor configuration contains sufficient inftiona forefingers (index and middle fingers). The forefingers apply
to localize a single point of contact with arbitrary preoisi a constant light squeezing force against the thumb which is
anywhere on the convex contact cap [27]. In order to minimiZesld fixed. Then, the robot pulls its hand away from the fixed
the effects of uncontrolled variables such as temperature pwint in the direction of the arrow illustrated in Figure 5.
mechanical shifts in the sensor itself, the vector of signaiVe will refer to a single pull as a “swipe.” Each swipe
produced by a single sensor is normalized on every timestepvers a distance of typically two or three inches at a speed

Interaction scenario
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(a) Interaction scenario (b) Sample points (c) Proprioceptive data (d) Tactile data

Fig. 5. lllustration of the training phase. (a) illustratee robot hand performing a “swipe” from left to right. (b) s¥®the state locations of the rougt#g000
state-measurement sample pairs collected during traininga2e25 x 2.25 inch patch on the surface of the material. (c) illustratesnglsi proprioceptive
signal (distance between the middle fingertip and the thumloy c@riation: 0.01 to 0.97 inches) over the state spaceill(ditrates a single tactile sensor
signal (from the middle fingertip force sensor, color vaaati-0.457 to +0.351 volts) over the state space.

of approximately1.3 inches per second. During each swipeThe remaining dimensions of uncertainty describe where con
the thumb is commanded to hold a constant position withct occurs on the surface of the material. We parametrize th
large stiffnesses in its four joints. In the index and middlsurface of the material by a local two-dimensional coorttina
fingers, the adduction/abduction and the medial/distait$oi frame. State is defined to be the location of the thumb tip
are commanded to hold fixed positions with large stiffnessas this coordinate frame. During training, a corpus of data i
The proximal finger joints apply a constant closing torqueollected that pairs state with proprioceptive and foragsee
such that each finger pushes with approximately Newtons measurements in the context of the swipe interaction deestri
against the thumb in the direction of closing (see Figur@)5(aearlier. In order to obtain accurate measurements of state,
As the hand pulls, the material is squeezed between tie material is held in a jig so that it is roughly immobile
thumb and fingers so that it complies with the hand iwith respect to the base frame. Then, data is collected by
a particular and repeatable way. As the fingers move owgrstematically by performing a series of swipes so that the
the material, proprioceptive and tactile sensor measumsmeentire region of interest has been “scanned.”
respond to the mechanical stiffness characteristics of theFigures 5(b), 5(c), and 5(d) illustrate data collected dur-
material. Haptic features such as buttons or grommets hamg a training session. The data corpus represented censist
mechanical properties different from that of the surrongdi of approximately25000 state-measurement pairs sampled in
material. As a result, we expect to be able to localize the#®e locations indicated in Figure 5(b) over approximately a
features based on sensor measurements. The evaluation$.3p x 2.25 inch patch in the neighborhood of the plastic
this paper are performed for the three features illustraned bump. The data was collected by performing 6 “scans” of the
Figure 4. The bump in Figure 4(a) is used to fixture the flexiblentire region. Each scan consists of 23 swipes with eacheswip
plastic in the context of a factory assembly task. The snapseparated from its neighbors by approximately inches. In
Figure 4(b) and the grommet in Figure 4(c) are embedded principle, one would expect this procedure to generate ksmp
a simulated thermal blanket that is an important part of mamy a series of parallel line.1 inches apart. However, stiction,

extra-vehicle NASA tasks. Coriolis, and inertial effects in the robot arm joints as lwel
as forces generated by interaction with the material cause
[1l. L OCALIZATION the variation evident in Figure 5(b). Figures 5(c) and 5(d)

When the robot interacts with a haptic feature such ggjstrate_an example of a proprioceptive _signal and a force
a button or grommet, it “feels” a characteristic signal thaiensor signal sampled from a nearest neighbor function on a

enables it to localize the feature. We consider two types [jqr?ularly spaced grid defined over &5 x 2.25 inch patch

sensor informationproprioceptiveinformation that measures V€€ each grid cell is @02 x0.02 inch square. Each point in ,
finger displacements and force sensor information thattjre the grid takes the measurement value of the nearest sample in

senses the magnitude and direction of loads applied to ﬂh‘& CcOrpus. F?gure 5(c) shows the distance between the thumb
finger. and middle finger. The measurement values range between

0.01 inches (blue) and.97 inches (red). Figure 5(d) shows
the response of one of the tactile sensor signals in the middl
finger. The measurement values range betweénl57 volts
During training, a haptic “map” is created that associat€blue) and0.351 volts (red). As one might expect, the two
each point in state space with a measurement. Since thipes of measurements are aligned. The same forces that caus
material is squeezed between the thumb and forefingers, thre thumb and middle finger to separate as they travel over the
know already that it is touching the thumb and that it is lcal bump are also recorded by the force sensor. Notice that the
tangent to the finger and thumb surfaces at the point of cbntgmroprioceptive data (Figure 5(c)) has the largest respahss

A. Training Phase



the middle finger is on top of the bump while the tactile data The goal of Bayesian filtering is to track the state of a
(Figure 5(d)) has the greatest response on the edges of stechastic system as it changes. It is assumed that state,
bump. is Markov. At every time step, the measurementsdepend

Figures 5(c) and (d) are characterized by variations @nly on the current state. Starting with a prior distribatmver
measurements that form horizontal lines. Comparison wisltate,P(x(), Bayesian filtering recursively updates a posterior
Figure 5(b) indicates that these lines are associated Wweh distribution, P (|22, u1.t—1), Wherex; is the state at time
geometry of the scan process during training. If two swip&sand zo.: = {22, ..., 2:} is the set of measurements between
that are performed nearby to each other at different timéme 2 and timet. The update to the posterior (also called
have slightly different measurement responses, then thisthe “belief state”) is accomplished in two steps. First, the
manifested by a line. There are two main sources for thigediction step updates the distribution by applying aesyst
variation: measurement noise and errors and shifts in thmdel:
flexible material during training. Sensor error is caused by
small variations in the response of the finger tension sensor
that cause the finger torque cqntroller to produg:e slightly :/P(xtll‘t—hut_l)P(:L“t_1|22;t_1,U1;t_2)dxt_1. 1)
different torques, thereby squeezing the material shgmtbre
or less tightly. In addition, sensor error is also caused by the second step, the posterior distribution is updated in
variations in the fingertip load cell. This paper models bothroportion to the likelihood of having generated the obedrv
of the above sources of sensor error as independent aRgasurements;:
identically distributed (iid) Gaussian noise.

The other main source of variation in the training data is P(x|z0.4, u1.4—1) = (2)
shifts in the position of the flexible material during traigi P(zt]z2:-1)
Our training procedure is to fixture the material such that th Equations 1 and 2 constitute an optimal solution to the
position of the thumb in the base frame is roughly propoglonproblem of tracking state in a Markov system. However,
to state (the position of the thumb in the coordinate frame tfey ignore the question of how the posterior distribution
the material). If the material is perfectly fixtured with pest is represented. Two popular solutions to this problem are
to the jig (which is itself fixtured with respect to the grojnd the Kalman filter and the particle filter. The Kalman filter
then the system should make the same measurements inisheptimal, but makes strict (linear system, Gaussian hoise
same state on average. However, we have observed s@sgumptions regarding the system and measurement models.
degree of uncontrolled shifts in the material during tragni Another alternative, the particle filter, does not make ¢hes
Based on our observations, these shifts are stochastiarie sgestrictive assumptions. However, it can fail when theipkert
regions of state space and relatively deterministic in isthesample set does not estimate the posterior distributioh wit
For example, when a finger swipes near the edge of a featusefficient accuracy.
it will stochastically either remain on top of the feature or The experiments in this paper were all performed using the
it will slide off (this effect can be observed on the top edgetandard sample importance resampling (SIR) version of the
of the bump in Figure 5(c) where there are a few relativelyarticle filter [29] using &5-particle sample set. At each time
pronounced lines). Whether the fingers slides off or not #ep in the SIR particle filter, the process update (Equdt)as
stochastic. However, this particular effect only occurstiom implemented by sampling from the posterior distributiorov
edges of the features — in the middle of a bump or in sfates conditioned on action. We assume a Gaussian motion
featureless region of state space, state measuremeniisedye | model:
to be less noisy. This paper handles the possibility of state P(zii1|u) = N(z; f(z,ue), Q), 3)
estimation errors in the training set by modeling the likebd . .

wherez, 1 = f(x¢,u;) denotes the nominal process dynamics

of a measurement in terms of a neighborhood of states a{HdQ is the covariance of the process noise. The measurement
the training set surrounding the query state. In SectioiCllI P )

and 111-D, we model this likelihood with a Gaussian fit to-Pdate (Equation 2) is implemented by weighting each of the

the measurements from the training set neighborhood. qartlcles proportional to the measurement likelihood. riteo

n .
Section IV, we model the likelihood as a mixture of Gaussiato prevent the sample set from collapsing at one of the modes
fit to measurements from the neighborhood.

P(x¢|z2:4—1,u1:4—1)

P(z¢|xy)P(xe| 220 —1, U1:0—1)

"% the posterior distribution]3 percent of the particles are
chosen uniformly randomly at each time step.

B. Bayesian filtering

The problem of localizing an object through touch is similaf- Proprioceptive measurements
to mobile robot localization. Both are tracking problemsmeh  Bayesian filtering can be used to perform localization using
acterized by non-zero process noige.(noisy transition dy- proprioceptive information alone. We encode propriocepti
namics) and observation noise. Whereas wheel slippagesaustormation in terms of the pairwise distances between the
process noise in mobile robot localization, the unprebieta three fingers. Recall that during interaction with the miater
shifting or deformation of the material causes processenoisnly the proximal flexion joints in the index and middle finger
in our problem. Both problems are characterized by noisye under torque control. The rest of the joints in the hand
sensor information. Given these similarities, Bayesidarfilg are commanded to hold fixed positions with a high stiffness.
is appropriate to flexible material manipulation. As a result, there are no more than two dimensions of finger
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Fig. 6. Relative finger positions as a function of palm positiColor denotes the magnitude of each pairwise distande reit indicating a large distance
and dark blue indicating a small distance. (a) shows the ristdbetween the tips of the index and middle fingers (colomtian: 0.01 — 0.97 inches); (b)
shows the same for the index finger and thumb (color variatid®d 6 0.93 inches); (c) shows the same for the middle finger amehtih(color variation:
0.09 — 0.96 inches). (d) illustrates average localizatierfggmance using only pairwise distance measurements.

position variation. These two dimensions are represerded t 16
the system in terms of the three pairwise distances. Althoug
this is a redundant representation, the extra data helpagee
out the sensor and state estimation error in the training set
described in Section IlI-A.

During the measurement update, the patrticle filter weights
each particle by the likelihood of the measurements. The
likelihood of a proprioceptive measurement;, given that
the system is in state is modeled by a locally-weighted
Gaussian distribution defined with respect to thestates 02 ‘ ‘ ‘ ‘ ‘ ‘ ‘
nearest (Euclidean distance) Z ™ Relatve position (inches)

P(z4]w) = N (245 2a(x), Za(2)),

whereN (x; u, ¥) denotes the Gaussian pdf ovewith mean,

Error magnitude (inches)
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Fig. 7. Comparison of average localization performance ferthinee flexible
materials shown in Figure 4 when only proprioceptive infolioratis used.
Average performance for the flexible bump is in blue, the snagréen, and

u, and covariancey. The mean is the grommet is in black. Results are aligned with feature ionat

N 1

Zalw) = + > za(w), 4)

x; ENg ()
wherez4(z) denotes the distance measurement associated WRtHNP training set. As in Figure 5(c) and (d), each of these
statez in the training set, andVi () = {z1,...,2;} denotes iMages is sampled over a grid covering25 x 2.25 inch
the set ofk states nearest (Euclidean distance)atoThe &réa with each grid cel0.02 inches on a side. The color
covariance is denotes the magnitude of the pairwise distance averaged ove
1 a local neighborhood 080 nearest neighbors (Equation 4).

Ya(z) = z Z (za(i) = 24) (za(z:) — 20)" . (5) Figure 6(a) through (c) can be understood intuitively. &ith
z;€Ni(z) the index finger or the middle finger travel over the bump.
Notice that we are not fitting a measurement function with/hen a finger crosses the bump, the bump pushes it away from
constant measurement noise. At a query point, our modBg thumb. At rest, the middle finger is raised slightly above
estimates both the mean and covariance parameters of i index finger. When the middle finger crosses the bump, it
Gaussian based on a local neighborhood of data pointsnipves away from both the index finger and the thumb. When
the training set. This model incorporates state unceptairfhe index finger crosses the bump, it moves away from the
in the training set. The state space uncertainty projedts ithumb and towards the middle finger.
the measurement space. In regions of state space where thehe localization performance of this model using the three
average gradient of the measurement function with respgeirwise distance measurements for a plastic bump dataset i
to state is large, Equation 5 calculates a large covariandkustrated in Figure 6(d). The plot shows localizationosrr
In contrast, the locally weighted sample covariance in averaged over 20 test swipes in an additional test scan of the
region where all neighboring states have the same expectedterial. As in training, the test swipes comprising thensca
measurement should be similar to the underlying measuremare approximately).1 inches apart over approximately2a25
noise. square inch area. Error is equal to the L2 distance between
Figure 6(a) through (c) shows the neighborhood means foeighted average particle location (the mean of the sampled
the three pairwise distances as a function of state for #h&tipl distribution) and the ground truth state measured durisg te



ing. Figure 6(d) shows a fast initial drop in localizationmaer
that is caused by the system immediately realizing thatribis
on top of the bump. After this, localization error begins adl f
again between-12.5 and—13. This is exactly the point where
the thumb-index distance begins to change significantly in
Figure 6(b). Localization error reaches its minimum betwee
—13.5 and —14 inches. Since the three pairwise distances
also reach their maxima in this region, we know that error
is minimized when one finger is completely on top of the
bump. Average localization error briefly reaches a minimum
near0.25 inches. However, since this low error estimate does ozl
not persist, it may be difficult to assure that the particleffil
converges with a low error estimate. Ik 25 i3 a5 =y Tias

Figure 7 shows a comparison with average localization Position (inches)
performance for the snap (green) and the grommet (black).
Training data was collected for these two other features- Sinfig. 9. Comparison of average localization performance usiogrioceptive
larly to how the plastic bump data was collected as describ@gasurements alone (the dotted blue line) and average laitaiiizperfor-
. . . . ance when both proprioceptive and tactile measurements edg(the black
in Section Ill-A. The data are aligned with the center q'ﬂe)_
the feature at zero. Localization error for all three feasur
becomes smallest just before reaching the center of theréeat
This suggests that the most relevant measurements are madet also take into account the state estimate noise caused
as the fingers are just beginning to move over the featus: shifts in the flexible material. As a result, we model the
Notice that as the fingers move past the center of the featugstile data as a single Gaussian defined over locally-weith
localization error for the bump and snap gets worse whiample moments:
error on the snap remains roughly constant. This suggests R
that the proprioceptive measurements made after reaching P(zi|r) = N (215 24(2), X (2)) -
the feature center are less informative for the bump anthe mean is,
grommet but continue to be informative for the snap. When 1
the measurements are not informative, notice that our Gauss Zi(x) = p Z ze(x;), (6)
noise assumption (Equation 3) causes a gradual increase in 2 €Nk ()

the entropy of the distribution, leading to an increase i tr\‘Nherezt(:n) is a function that evaluates to the vector of tactile

expected error. But why are the measurements less mfoxmatéi nals for stater in the training set andV () is the set of

o
for the bump and the grommet but not for the snap’ Sm%eg: 30 nearest states. The covariance over the local region is:

the grommet is relatively narrow compared with the snap and .
bump, the fingers quickly leave the surface of the grommety, .y — = o (2 — 500 (2 () — 5N (7
and measurement informativeness drops. For the bump, oncet( ) k Z (@) = (@) (@) = &(e)) @

the fingers are on top of it, the proprioceptive measurements

are equally consistent with any other location on top of tHaSSuming that the proprioceptive and tactile data is caomht
bump. Therefore, there is some flexibility for motion errof!ly independent given state, the joint likelihood is thedurct:

to integrate once the fingers reach the top of the bump. In P(2|z) = P(zq]z)P(2]|2). 8)
contrast to the grommet and the bump, the snap is both large _ _ _ _ _
and haptically informative over its entire extent. Measueats ~ The tactile data can be visualized using a singular value

continue to be informative for the entire time while the firgye decomposition. We perform the analysis for a grid with2
are touching the snap. square inch cells overa25x2.25 square inch patch (the same

patch illustrated in Figures 5 and 6). Let= (z1,...,2,)7
] be the vector ofn = 24802 cells. Letz{(x) be it" element
D. Tactile measurements of 2.(x). Let 2i(x) = (%i(x1),..., 2 (z,))T. Form measure-
The fact that it is possible to achieve localization accyraénents, the dimensionality of the information containedha t
of approximately0.4 inches using only proprioceptive infor-Smoothed measurements is the rank of:
mation suggests that it should be possible to do very well if T = (5(x) 27 (%))
tactile data is incorporated as well. The fingertip tactdesors Pt '
provide more descriptive information — although our load~or the flexible bump training data, the middle fingertip ens
based sensors are still limited because they only provideefo produced seven dimensions of tactile data. The singulaesal
and torque information rather than direct information rdifeg  of T" for this 7 x 24802 matrix are1.9361, 1.2055, 1.0716,
the contours or texture of the surface. As was the case fbr418, 0.2446, 0.1883, and0.0664. The first four eigenvectors
the proprioceptive measurements, the tactile measursmeare illustrated in Figure 8. A couple of points bear mentigni
are also subject to sensor noise that will be assumed to Hiest, in contrast to the proprioceptive information (FHig(a)
Gaussian. In addition, the tactile data measurement mothalough (c)), most of the sensor response occurs on the edges

o o In I
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Fig. 8. First four eigenvectors of the tactile data.

of the bump. Furthermore, the first four eigenvectors redpon

differently to different parts of the edge of the bump. Using

only the first four eigenvectors, it should be possible to do a

good job localizing where along the edge of the bump contact

with the finger occurs. The plot shows localization error
Figure 9 compares the performance of Bayesian localization

using a combination of proprioceptive and tactile data (the

solid line) with the performance using just the propriocept

data (the blue dotted line — same as in Figure 6(d)). The

particle filter parameters as well as the flexible plastic pum

training and test data sets are the same as those used in %Lz T4 s e 13 Bz 34 Bs Be 14 w2

Section IlI-C. As before, these results are averaged over x (inches)

20 test swipes comprising an additional test scan. Error is

equal to the L2 distance between weighted average partiEi@: 10. Measurements associated with 30enearest states for a trajectory

location (the mean of the sampled distribution) and the |gdouthr°ugh state space.

truth state measured during testing. The first thing to eotic

_about Figure 9 is _that incorporating the_ tactile data defipit trajectory in state space. In this trajectory, the middigédin
improves localization accuracy — especially betweei$ and skirts the edge of the bump. For states less thaB.2, there is

b_13.5 inch(_as. This Is consiséen.t Vr\:ith Wh,él‘t rgay bhe Obs?rvefﬁ!tle variance among the signals of tB@ neighbors. However,

Yy comparing .Flgures 6 and 8 t_ € tacy e data has a lar ring the portion of the trajectory where the finger intésac
response efarh.er than. th? propnocep'uve Qata. When o th the bump, there is a clear bimodal distribution over
proprioceptive information is used, the flnggrnp_s mgsUatty ._signals within the neighborhood. Sometimes the finger slips
be d'Splace(_j by the_ feature before_loc_ahzatlon IS poss!bt% of the bump and produces the lower trajectory in Figure 10
The tactile information allows localization to occur wh|IeSometimes the finger remains on the bump and produces the
the forces that cause the fingertip displacements are aCtiUBper trajectory. Clearly a single Gaussian distributisrai

The other notable feature of Figure 9 is that localization, fit for this data. Given state uncertainty in the tragnin

per:]ormarr:(_:e_ls actually_ worse tb)etweeﬂ3.95hand —14.25 . set, we need a measurement model that associate some states
inches. This is counter-intuitive because in the Bayesnugti with a multimodal measurement distribution.

setting, additional data should only improve the estimates A number of modeling techniques can be used to fit a
suggests that below13.95 inches, the tactile data likelihood model to a multimodal distribution. A variant of EM could
model is inaccurate and causes localization errors. Thé NBX used to fit a mixture of Gaussians [30]. Alternatively
section shows that a more accurate tactile measurement moge,  «cian process regression might be used to fit a nc;n-

can reduce the impact of this effect. parametric model [30], [31]. However, this paper leavesé¢he

more sophisticated models to future work. Currently, wetak

lazy-learning approach that models the multimodal diatidn
Until this point, we have modeled state uncertainty in th&s a Gaussian mixture defined directly over the training.data

training set by fitting a single Gaussian to the measurememsparticular, we model the likelihood of a tactile measuesin

associated with a neighborhood of training set states gheut vector, z;, as:

query point. However, Figure 10 illustrates that this uteiaty

is not always Gaussian. Figure 10 shows measurements from P(az) = Z Plaa)N (21 20 (2i), ) ©)

one tactile signal in the middle fingertip associated wita th €Dz

k = 30 nearest states in the training set for a particulavhereD, is the set of all states in the training data sefx)

IV. GAUSSIAN MIXTURE MEASUREMENT MODEL



proprioceptive information, performance is again impbig
adopting the Gaussian mixture model over a single Gaussian
L2p model. Correct localization occurs earlier than it did wiitie
single Gaussian model and there is less integration of error
once the fingertips move off the edge of the bump.

Figure 11(b) compares average localization performance fo
the flexible plastic bump with the average performance fer th
shap and the grommet. Comparing with Figure 7, the mixture
of Gaussians model improves localization performance ffor a
three features. However, notice that Figure 11(b) ind&c#tat
% s P;‘ssmon (in;féss) = s the mixture of Gaussians is capable of localizing the ptasti

bump and the snap before the fingers actually touch the &atur

(@) (the center of the feature is at the origin of the coordinate
frame). This is not strictly a result of overfitting to theitriag
data because these results are for a separate test dataset.
The early localization is a result of repeatable infornmatio
content in the “featureless” region of the flexible material
prior to contacting the feature. Looking at Figure 8, notitat
there is subtle information content prior to touching thenpu
(otherwise, we would expect the non-bump measurements to
be perfectly uniform). This subtle information does notséxi
in the proprioceptive information alone (Figure 6). Frone th
perspective of contact mechanics, we hypothesize that the
stiffness and surface properties of the flexible plasticehav

Error magnitude (inches)

Error magnitude (inches)

s A R e nocion (nees T is slight variations over the “featureless” region as a funcf
elative position (inches) . . .
the distance of the contact point to the edge of the plastic,
(b) the position of the contact with respect to the bump, or

differences in the surface properties of the plastic. Thie-
Fig. 11. Performance of the Gaussian mixture measurement meetelgaed feature_locahza“on 1S _an advantage as long as the mate”aj
over a test scan consisting of 20 swipes. The solid line irll(&trates local- properties that are being used are repeatable. However, it
ization error on the plastic bump for the mixture of Gaussianasueement jntuitively seems dangerous to localize based on this subtl
model. The dotted line shows average localization errotfersingle Gaussian P . . . . .
model (repeated from Figure 9). (b) compares the averagerpefwe for the variation instead of waiting until the_ fingers interact witre
plastic bump (the blue line) with the average performance Hersnap (the feature. Although we have found this pre-feature model to be
green line) and thg ?rorr?met (the bI?CE Iinﬁ) US]ing the miXthu;tf:Sians repeatable with respect to data collected on different dags
measurement model. The centers of the three features are zero . . . .
on the horizontal axis. expec_t th_at over longer time horizons, this pre-featurdiléac
variation is not repeatable. As a result, we pursue the rgmed
described in the next section.
is the tactile measurement in the training set correspgndin
to statex, X, is a user-defined spherical variance, anis _ _
a normalizing constanip(z;) is a radial basis function thatA. Modeling off-feature states as a single state

penalizes the contributions from elements of the data st Wi The |ong time horizon overfitting problem can be addressed

associated states that are far from the query state: by dividing state space in the training set into into am-
o) = N (2]m,5,) featureregion and aroff-featureregion that are defined man-

ually. For all states in the off-feature region, the measanet

whereX, is another user-defined parameter. likelihood is modeled by a single likelihood function thabda

The results of incorporating this model into Bayesian locag|s data taken from the entire region. This prevents ther filte
ization are illustrated in Figure 11. As before, these ftssafle  from differentiating between off-feature states. Essgiytiwe
averaged over 20 test swipes. Error is equal to the L2 distange jumping all off-feature state hypotheses into a singlé n
between weighted average particle location (the mean of ‘F‘&othesis with a single likelinood model.
sampled distribution) and the ground truth state measuredcgnsider the case of two tactile sensors (for example,
during testing. This version of localization is identicalttv ha index and middle finger tips) with positions and b
that used in Section I1I-D except that the likelihood of tigct 5, corresponding measurement vectgrsand =2 such that
measurementspP(z|x) in Equation 8, is modeled as the, _ r.e by Whereas in earlier sections, the measure-
Gaussian mixture. Figure 11(a) compares the performance gin; jikelihood was conditioned on the palm position, now
the Gaussian mixture version of localization (the solice)in marginalize over the two sensor positions:
with the performance of the single Gaussian model (the dotte
blue line) from Figure 9. Just as localization performanes w P(z2, Zf\x) = ZP(zﬂa)P(zﬂb)P(a, blx). (10)
improved by incorporating tactile information in additido ab



this new model does not localize the feature before the finger

come into contact with it. Figure 12(b) shows variance in the

12 1 particle set averaged over the 20 test swipes. The new model
has a high variance that persists until the fingers come into
contact with the feature at approximately inches prior to

the bump center (the bump has approximately a one inch
outer diameter). From a practical perspective, the deereas

in variance when the fingers contact the feature is useful
for signaling that the localization system has reached the
on-feature region and probably has a good state estimate.

Error magnitude (inches)

95 m - 1 " (¢ oo 1 Essentially, this on-feature/off-feature approach tiamss the
P continuous state estimation problem into a hybrid estiomati
(@) problem where the hypothesis space consists of the space of

on-feature states and the binary possibility that the syste
in an off-feature state. The likelihood of the binary offfare
hypothesis is the marginal likelihood of all particles ire tbff
feature region.

B. Applications

The main motivation for using touch sensing to local-
ize haptic features is that it can improve the robustness of
manipulation tasks involving soft materials. This subsect
illustrates this advantage in the context of two tasks: atjga
manipulation task and a grommet insertion task. The oljecti

Average variance (inches)

45 E Relatod positon (nches) o5 1 of the plastic manipulation task is to locate a bump in the
flexible plastic using touch sensing and move the tip of the
(b) thumb inside the recess of the bump. The objective of the

grommet insertion task is to localize a grommet using touch
Fig. 12. Performance of the on-feature/off-feature apgrgaolid lines) com- sensing and insert the grommet onto a fastener. Both of these

pared with the undifferentiated mixture of Gaussians apgrddotted lines). insertion tasks are part of larger assembly tasks that are
The solid lines show the performance of the featureless gwveganethod. common in factory settings.

The dashed lines show the Gaussian mixture performance forar@up. (@) \\e gpplied our localization technique to the thumb-in-
shows average localization error. (b) shows average latan variance. The ) . . L.
origin on the horizontal axis denotes the center of the featu bump task (illustrated in Figure 13). Before localizing the
bump, it was assumed that the bump position was known
to within a square region two inches on a side. Given this
Define functions A(x) and B(x), that evaluate to the positionapproximate location, the robot reached to the nominal bump
of sensorse and b, respectively, when the palm is at position and compliantly closed its fingers around the fast
ApproximateP(a, b|x) to bel whena € A(x) andb € B(x) using the interaction procedure described in Section II-C.
and zero otherwise. Then, Equation 10 becomes: Then the robot performed a swipe. During the swipe, the
o bump was localized using the single-Gaussian model of the
P(z|r) = Z Pz |a)P(Zf|b)’ (11) prop?ioceptive informatior?, the miSture of Gaussians mode
(a,b)€A(w)x B(=) of the tactile information, and the separate modeling of the
If a is in the on-feature region, then we estim#@t¢:¢|a) as featureless regions (all the techniques proposed in thtfosg.
before using Equation 9. Otherwise, we estimate: If, at any point during filtering, the marginal likelihood of
o @A the measurements exceeded a given threshold, then filterin
P(zfla) = N2 Zor1: Yor ), (12) stopped and the thumb was inser?ed into the bump. Othervvise%1
where 2, and X,y are the sample mean and covariancen additional swipe was performed. The insertion itself was
taken over all points in the off-feature region. performed using a hand-coded procedure, parametrizedeby th
Figure 12 illustrates the results of aggregating off-femtumaximum likelihood bump location, that changed all finger
states. These results were obtained using the same plasficts to stiffness mode, moved the thumb into the bump,
bump dataset that was used to produce the results in Fagpd simultaneously gripped the plastic from the other side
ure 11. The solid line in Figure 12(a) shows the error farsing the fingers. The diameter of the interior of the bump
the on-feature/off-feature approach averaged over a test swas approximately0.85 inches. The diameter of the thumb
comprised of 20 swipes. As before, error is equal to thg was approximately.65 inches. In order to successfully
L2 distance between weighted average particle locatioa (timsert the thumb into the bump, the localization error cdagd
mean of the sampled distribution) and the ground truth staie greater than approximately35 inches. Any greater error
measured during testing. The dashed line shows error for auwuld cause the thumb to “pop” out of the bump during the
previous approach reproduced from Figure 11. As expectéasertion.



() (d) (e) ®

Fig. 13. lllustration of the thumb insertion task. The ohjeztis to insert the thumb into the recessed plastic bump. Frdajethrough (d) illustrate the
swipe. Frames (e) and (f) illustrate the thumb insertion.

(b) (d)

Fig. 14. lllustration of the grommet insertion task. Framesti@ugh (e) illustrate the swipe. Frame (f) illustrates theertion.

While we do not have quantitative statistics on the succefsstener location that is assumed to be known (we assume
and failure rate of this insertion task, it was qualitatwelthat the fastener is fixtured to a large object that can be
very successful. Almost all failures were caused by sendocalized using other methods.) The insertion was perfdrme
calibration errors. Given properly calibrated finger tensi under Cartesian stiffness control with a stiffness certdeated
sensors and tactile sensors, this thumb insertion proeedat the grip point. This task was much more difficult than the
succeeded at leasth percent of the times attempted. Wehumb insertion task because the required tolerances veeye v
successfully executed this thumb insertion procedure mamall. In order to successfully insert the grommet, loedion
than 100 times. As a result of the sensitivity of the proceerror could be no greater than2 inches. Since this is very
dure to calibration errors, we developed a short calibnatizlose to the expected localization error for the grommee (se
procedure that was performed before performing locabmati Figure 11(b)), even a small errors in force sensor calibnati
experiments or demonstrations. This procedure autonfigticacaused this task to fail. Compared with the thumb-in-bump
relaxes all finger tendons, resets the tension affine offaats insertion, we executed this task relatively few times (only
recalculates tendon gains after re-tensioning [28]. approximately20 times). The task was likely to succeed when

We also applied our localization technique to a grommé&¥ecuted directly after taking a training data set. However
insertion task. The objective was to localize a grommet @mbeUr System was subject to sufficient drift in the sensors that
ded in fabric that was placed in the robot hand in an unknowg could not execute successfully on a different day without
position, grasp the grommet, and insert the grommet ontd@iNg @ new training set.
fastener. (This was actually gquarter turnfastener that must
be turned after insertion to lock the fabric in place. Howgeve V. DiscussioN
in this paper we ignore the turning part and just perform the This paper has examined methods of using proprioceptive
insertion.) The grommet was placed in the robot hand in @md tactile measurements to estimate the position of arfeatu
unknown (but constrained to the region of states from whigsuch as a button, snap, or grommet) embedded in a flexible
the swipe would cause the fingers to pass over the bump) comaterial such as thin plastic or fabric. We have character-
figuration (Figure 14(a)). Then, the hand compliantly ctbseézed the relative utility of the two types of measurements
around the fabric and performed a swipe (Figure 14(b-d)yith respect to localization performance and shown thay the
As in the bump insertion experiment, the localization tecleontain different kinds of information. We have demonstat
niques proposed in this section were applied. If, at anytpoithat using both types of information rather than just propri
during filtering, the marginal likelihood of the measuretsenoceptive information results in a sizable gain in localmat
exceeded a given threshold, filtering stopped. If localrat performance. Given the state estimation errors inhereatiin
succeeded, the robot gripped the fabric tightly (Figuree]4( training mechanism, we have found the tactile measurement
and moved to an insertion location (Figure 14(f)) calcudatemodel to be multimodal and proposed a mixture of Gaussians
using the maximum likelihood grommet position and thenodel that results in an additional improvement in locdiaa



performance. Finally, we have explored two applicationsiof

(2]

approach that are relevant to manufacturing and space-appli

cations: a flexible plastic manipulation application (Figd3)
and a grommet insertion application (Figure 14).

(3]

Although the study in this paper of localization during

manipulation has been experimental, the conclusions can
expected to generalize beyond the particular hardwartophat

used. Robonaut 2 (R2) is obviously an extremely sophistitat

platform with features that most other robots do not have[.5]
However, only two hardware capabilities are needed in cer

apply the conclusions from this paper: finger compliance and
tactile sensing. The finger compliance needed can be achievié!
using active [26] or passive [32] mechanisms. Furthermore,
miniature load cells (such as the ATl Nano-18) are currentlyr
available for sale that can be used similarly to how we have

used our custom tactile sensors.

: . DU . .8
The idea of using Bayesian filtering to localize materlalé ]

held in a robot hand is attractive. Reproducing in maniporat

El

the success that Bayesian filtering has had in mobile robot

applications would be a significant and tangible step fodN:Zflo
in manipulation research. However, the approach propased i
this paper has significant limitations. From an impleméotat

perspective, we have found that approach is very sensith/el
to force sensor calibration errors. Although this sensoorer
was not a problem for the thumb-in-bump insertion tagk2]
because of the relatively large tolerances, it became mbre o
a problem for the tight-tolerance grommet insertion tasksT 13
highlights the continuing need for more robust and accurate
force and tactile sensing. From an algorithmic perspective

the primarily limitation of our approach is that localizaii
capability does not transfer from one haptic feature taed#it
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haptic features. While features that feel similar to a psgtet [15]

may be successfully localized, there is no explicit recogmni

that features can be different from the prototype featurdewhyg)
remaining within a class. For example, there is no explicit
recognition of grommets of different sizes — they are simp%]
perceived as being either more or less similar to the prptoty
One way to address this problem would be to train the
system on a class of features rather than a single feature. Rél
example, one might train the system to recognize grommets of
different sizes. However, since our current procedureiregu [19]
45 minutes of training time to recognize a single feature, it
would clearly become infeasible to train the system on Iar%]
classes of objects in a reasonable period of time. An altiegma
approach might be to take a compositional approach wheze

the system is trained to recogniparts of a feature rather

than an entire monolithic feature. For example, the systqgg]

might be trained to recognize a library of curves with diffier

curvatures and orientations. Features would be described i
terms of located collections of curves. While this approaéﬁe’]

would extend the representational capabilities of thigaagh,

the challenge would be to identify the relevant atomic shaje]

primitives.
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