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Abstract

Segmentation, or partitioning images into internally ho-

mogeneous regions, is an important first step in many Com-

puter Vision tasks. In this paper, we attack the segmenta-

tion problem using an ensemble of low cost image segmen-

tations. These segmentations are reconciled by applying

recent techniques from the consensus clustering literature

which exploit a Non-negative Matrix Factorization (NMF)

framework. We describe extensions to these methods that

scale them for large images and also incorporate smooth-

ness constraints. This framework allows us to uniformly

and easily combine segmentations from different algorithms

or feature modalities. We then demonstrate that popular

bottom up image segmentation algorithms, Mean Shift and

Efficient Graph Based segmentation, perform no better than

our simple combination of multiple image segmentations

derived from k-means clustering (of various feature spaces)

or from “naive” RGB quantizations. The algorithms are

evaluated on the Berkeley image segmentation dataset.

1. Introduction

Image segmentation, or partitioning an image into re-

gions with internal segment coherence, has a long history in

the Computer Vision literature and yet still has no generally

accepted solution [24]. The goal is to represent the image

with fewer, more meaningful parts, which makes processing

more tractable and robust for subsequent vision tasks such

as correspondence [27] or terrain classification [9].

In general, we want to assign pixels to segments based

on their similarity to other members of that segment and

dissimilarity to those of other segments. This implies a

distance or homogeneity metric based on some set of cues

which may include image distance, various region proper-

ties such as color and texture, or boundary/gradient infor-

mation. Often these different feature modalities give us dif-

ferent results for the pixel and region similarity required to

define segments, and considerable work has been devoted

to combining them [1, 3, 15, 18].

Clustering techniques are a natural approach to com-

puting image segmentations and a great variety of meth-

ods have been applied to the problem. Generic methods

such as K-means often have difficulty integrating the spatial

continuity or smoothness implied by image segmentation.

These limitations are overcome by more expensive graph-

based techniques such as spectral clustering [6] or normal-

ized cuts [20, 21], which explicitly represent neighborhood

linkages. Amongst the many segmentation algorithms pro-

posed in the literature, few work well on natural images,

and all are finely tuned to work on certain sets of images.

For example, algorithms which work well segmenting bio-

logical images rarely work well on outdoor scenes.

Our work is motivated by the observation that even

though a single segmentation algorithm or similarity met-

ric by itself might produce some poor segments, there of-

ten exist sub-parts of the image which it explains well. So

if diverse segmentations explain different parts of the im-

age well, an ensemble of these could produce a superior

consensus segmentation than any of the original segmenta-

tions. Our contribution in this paper is to provide a general

framework for seamlessly combining segmentations from
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heterogeneous sources of information.

The problem of combining multiple segmentations can

be posed as a cluster ensemble problem. While classifier

ensembles have been widely used in the Machine Learn-

ing and Data Mining communities, researchers have only

recently started exploring cluster ensemble problems [22].

This is primarily because the cluster ensemble problem is

inherently more difficult, since we no longer have well de-

fined classes. From a linear algebra point of view clustering

has been studied as a matrix factorization problem. Tradi-

tionally, SVD based methods have been used for this pur-

pose. However, for image data (which is non-negative),

the bases produced by these methods are not easily in-

terpretable since they do not enforce non-negativity con-

straints. Non-Negative Matrix Factorizations(NMF) [10]

produces a matrix factorization which respects non neg-

ative constraints, thereby producing directly interpretable

and more representative bases. On a parallel front, recently

Li et al. [11] have shown that consensus clustering (an al-

gorithm for solving cluster ensembles) may be posed as a

NMF problem. In this paper we propose the use of NMFs

for finding the consensus segmentation. We also explore in-

corporating domain constraints in the consensus process to

produce higher quality segmentation maps.

Cho and Meer [2] also proposed a consensus segmenta-

tion approach. The system is based on a bottom up Region

Adjacency Graph (RAG) pyramid method which merges re-

gions until a threshold on similarity is reached. The base

segmentations are generated using a grayscale consistency

metric, these are then used to compute a co-occurrence

probability field for pixels grouped together in the segmen-

tations. The probability field is in turn used as the metric

to compute the final consensus segmentation again via the

RAG pyramid. Our approach is related in that we search

for an assignment of pixels to segments which best matches

the mean co-occurrence M̃ij (see Section 2) for each pixel

or object pair. We determine the final segmentation using

NMF rather than a multiscale approach, which allows us to

avoid setting thresholds on region similarity.

Zhang et al. [26] propose combining an ensemble of

Spectral Clustering results computed using randomly gener-

ated scale parameters to construct a consensus segmentation

of SAR images. The authors propose several approaches

for combining segmentation maps including a majority vot-

ing scheme and a hypergraph-based metaclustering algo-

rithm. They conclude that, of the voting and hypergraph

techniques, the segmentation which maximizes sum of the

normalized mutual information between the base segmen-

tations and the consensus is the best solution. However, it

has been shown in [11] that the NMF approach outperforms

both the naive voting scheme and the more advanced hyper-

graph approach.

In fields such as object labeling and image retrieval,

researchers prefer segmentation approaches which exploit

prior knowledge or models related to the ultimate task goals.

Obviously the more context and semantic information that

can be included the better the segmentation will be from the

task viewpoint. Our goal is to generate useful segmenta-

tions for tasks where there is no prior knowledge which can

be applied, for example systems using superpixels to sim-

plify images [9, 17], or using coherent patches for Stereo

correspondence [27]. There are however several authors

who exploit multiple segment maps which are worth men-

tioning in this context. Russel et al. [19] use multiple base

segmentations for object labeling, but rather than combine

the maps, they select the best segment among all maps for

an object, based on learned object class appearance. Mal-

isiewicz and Efros [13] explore whether arbitrarily shaped

segments provide better support for object recognition and

demonstrate that sampling many segmentation maps allows

them to find tighter segments for objects. Hoiem et al. [8]

attempt to label a scene with geometric classes again by

sampling and evaluating multiple segmentations to find the

one with the best spatial support for the labeling task. Ra-

binovich et al. [16] use a set of segmentations determined

to stable under slight image changes, a signature for each

segment is computed and used to classify it based on train-

ing image signatures. All of these systems use multiple

segmentations as a sampling of segmentation space, to ob-

tain the best support (tightest fit) for labeling objects in the

scene.

Our NMF framework provides a flexible general method

for combining a set of maps as well as additional constraints

such as smoothness or potentially boundary information.

The base maps themselves can arise from any combination

of segmentation algorithm and feature modality. A signif-

icant advantage is the ability to combine information from

many sources in a uniform way. Allowing each modality to

contribute a map has advantages over combining attributes

in a single high dimensional feature vector. We see in Fig-

ure 1, that the curse of dimensionality causes poor segmen-

tation performance for a simple k-means based segmenta-

tion using the stacked features.

Techniques such as ours, which use connectivity (co-

occurrence) matrices between pixels, present a problem due

to their size. We describe a method to scale the problem by

essentially computing regions which have a preconsensus:

spatially linked pixels which belong to one segment in all

segmentation maps. These superpixels or objects allow us

to compute consensus segmentations even for large images.

We also present a no bells and whistles alternative which is

able to perform fast consensus segmentation.

Finally, Sections 2 and 3 present details of the proposed

approach and Section 4 presents the evaluation of our sys-

tem on the Berkeley image segmentation database and com-

parison of our results to those for Mean Shift [4] and Effi-



Figure 1. Image and its stacked K-means segmentation

cient Graph-based Segmentation [5].

2. Consensus Segmentation Framework

The consensus segmentation problem seeks to recon-

cile T different segmentations (base segmentations) of a

p × q image. Equivalently, the consensus segmentation is

a segmentation closest to all T segmentations. Let B =
{S1, S2, ..., ST } be the set of base segmentations. For each

segmentation St, we have K segments {St
1, S

t
2, ..., S

t
K},

where K is not necessarily the same for each segmentation

St, and every pixel must belong to some segment St
k for

each segmentation St. By representing each segmentation

St as a pq × pq connectivity matrix, M :

M t
ij =

{

1 (i, j) ∈ St
k

0 Otherwise
(1)

we can compute the distance (∆) between any two segmen-

tations S1 and S2 as:

∆(S1, S2) =

pq
∑

i=1

pq
∑

j=1

δij(S
1, S2) (2)

where δij is the pairwise pixel distance:

δij(S
1, S2) =











1 (i, j) ∈ S1
kand(i, j) /∈ S2

k

1 (i, j) ∈ S2
kand(i, j) /∈ S1

k

0 Otherwise

(3)

or equivalently

δij(S
1, S2) = (M1

ij − M2
ij)

2 (4)

Now, the problem of finding the consensus segmentation

can be formulated as the following optimization [7]

min
S∗

1

T

T
∑

t=1

∆(St, S∗) = min
S∗

1

T

T
∑

t=1

pq
∑

i,j=1

[M t
ij − MS∗

ij ]2

(5)

equivalently,

min
U

pq
∑

i,j=1

(M̃ij − Uij)
2 (6)

where, M̃ = 1
T

∑T

t=1 Mij(S
t) and we adopt Uij = MS∗

ij

as the solution of the optimization problem for notational

simplicity.

Unfortunately, we also have constraints on U that need to

be dealt with. Consider any three pixels i, j, and l. Suppose

Uij = 1; that i and j belong to the same segment. If j and

l belong to the same segment, then i and l must also belong

to the same segment. However, if j and l do not belong to

the same segment, then i and l cannot belong to the same

segment. Now, consider the case where i and j belong to

separate segments. We can now have i in the same segment

as l, j in the same segment as k, or none of them in the same

segment. These constraints can be expressed as [11]:

Uij + Ujl − Uil ≤ 1 (7)

Uij − Ujl + Uil ≤ 1 (8)

−Uij + Ujl + Uil ≤ 1 (9)

Note that the above constraints are indexed by individual

pixels. Thus there are 3 constraints per pixel of the image.

The constrained optimization problem turns out to be np-

hard [12].

Following [11], we use an alternate specification of the

above optimization problem using row stochastic(rows sum

to 1) indicator matrices H = {0, 1}n×k. It is easy to see

that U = HHT . Our consensus segmentation problem now

becomes:

min
H

‖ M̃ − HHT ‖2 (10)

with H restricted to the space of indicator matrices. How-

ever, since restricting H to be a indicator matrix is hard, we

could reformulate the above problem as follows:

min
HT H=D,H≥0

‖ M̃ − HHT ‖2 (11)

where D = diag(HT H). By restricting HT H to be diag-

onal we indirectly enforce the constraint that each row of

H can have only one non zero element. However, this for-

mulation involves a priori knowledge of D (cluster sizes)

which is usually unavailable. As a result Eqn 11 is further

reformulated as:

min
H̃T H̃=I,H̃,D≥0

‖ M̃ − H̃DH̃T ‖2 s.t. D Diagonal (12)

where HHT = H̃DH̃T . D is now obtained as a solution

to the optimization problem. In practice, the constraint on

D being diagonal is relaxed to D being any symmetric non-

negative matrix, recasting the above problem as the famil-

iar orthogonal nonnegative matrix tri-factorization problem,

which is solved using iterative solution techniques.

Scaling.The algorithm as described above, however does

not lend itself to be used practically for image segmenta-

tion. The major problem in adopting the above algorithm



is the M̃ matrix. For a p × q image, the corresponding M̃
matrix has pq×pq entries. This quadratic growth in storage

severely limits the size of images which can be processed

by the algorithm. For instance, we found that, at best, we

could work on 70 × 70 images on a computer with 2GB

of RAM. To alleviate the scaling problem we observe that

the NMF problem may be interpreted as finding the closest

connectivity matrix to the given arbitrary (not necessarily

a connectivity matrix) M̃ matrix. Now, if a certain set of

pixels always occur in the same segment, establishing con-

nectivity to any one of them is equivalent to explicitly es-

tablishing connectivity to all of them. Thus such sets can be

collapsed into singleton entries in the M̃ matrix. We refer

to the entries in the M̃ matrix as “objects”. Note that these

objects cover a wide gamut of sizes from large sets to sin-

gleton pixels. The dimension of the matrix to be processed

now is n × n, where n < pq is the number of objects1.

We find that employing such a scheme results in consider-

able savings both in terms of memory and computational

cost, allowing us to comfortably processes 321 × 481 im-

ages. Figure 2 (Pre-consensed Image) displays the various

objects of a 321 × 481 image.

Smoothness Constraints.Smoothness is incorporated in

the consensus framework through additional constraints us-

ing the Penalized Matrix Factorization [25] formulation.

We now minimize the following augmented objective func-

tion:

J = min
H̃T H̃=I,H̃,D≥0

‖ M̃ − H̃DH̃T ‖2
F +tr(H̃T ΘH̃)

(13)

where Θ is a n × n matrix which encodes the smoothness

constraints.

We compute the pairwise overlap dij between the entries

of M̃ (objects). We define overlap as the length(in pixels) of

the shared boundary between two objects. The values Θij

are computed as follows:

Θij =
1

1 + e
−( 1

dij
)

(14)

Thus, objects having a smaller overlap would have a larger

Θij values2. The logistic function has the effect of normal-

izing the values in Θ to lie in the {0,1} range. Minimizing

the augmented objective function has the effect of encour-

aging neighboring objects to have the same cluster label,

thereby preferring smoother solutions to noisier ones.

The optimization problem of Equation13 does not re-

sult in closed form multiplicative updates needed for solv-

ing NMF problems. Instead, following [25] we solve a re-

1In our experiments we found that for images with 321 × 481 pixels,

n never exceeded 1200 and was frequently ≤ 800
2A small value is added to dij when i and j do not overlap. In our

experiments we found a value of 0.1 to be effective.

laxed version of Equation 13 which only enforces the non-

negativity of H̃ . The necessary update equations are:

D = (H̃T H̃)−1H̃T M̃H̃(H̃T H̃)−1 (15)

H̃ij = H̃ij

√

√

√

√

(M̃H̃D)+
ij

+ (H̃(DH̃T H̃D)−)ij

(M̃H̃D)−
ij

+ (H̃(DH̃T H̃D)+)ij + (ΘH̃)ij

(16)

where
(M̃H̃D) = (M̃H̃D)+ − (M̃H̃D)− (17)

(DH̃T H̃D) = (DH̃T H̃D)+ − (DH̃T H̃D)− (18)

The effect of the smoothness constraints on the resulting

consensus segmentation is shown in Figure 2.

3. Algorithmic Details

Base segmentation diversity. We employ k-means to

generate the base segmentations of the ensemble. Diversity

in the base segmentations is an important prerequisite for

avoiding degenerate solutions. We incorporate diversity in

our base segmentations in three ways:

Firstly, we inject diversity in the feature space by using

four different feature spaces

1. Hue-Saturation (HS): We use Hue and Saturation from

the Hue-Saturation-Intensity color space. We leave out

intensity in the hope of buying robustness to variation

in lighting condition.

2. Laws Texture space (Tex): We compute the laws tex-

ture energy measure in a neighborhood of size varying

between {3, 32} .

3. Color Histogram space (CH): We use a 15 bin his-

togram over the RGB color space, computed over a

5 × 5 window. Each color channel is allocated 5 bins.

The above set of features is meant to capture both color and

texture variations. However, which features are optimal, of-

ten varies from image to image. Our flexible framework

allows alternate feature spaces to be used just as easily.

Secondly, the base segmentations are computed at two dif-

ferent scales. This is achieved by using different k values

in the k-means clustering. In this work we used values of

{4,6}. We, thus form an ensemble of 6 segmentations.

Finally, we randomly initialize k-means and run it only for

a modest number(200) of iterations. Terminating k-means

when the algorithm might not have converged not only adds

instability but is also computationally more efficient. Fig-

ure 2 shows the 6 base segmentations and the resulting final

segmentation for an image from the Berkeley image seg-

mentation database.

Iterative Optimization. Akin to other NMF optimiza-

tion algorithms an iterative scheme is used in this paper.

The H̃ matrix is initialized by clustering the matrix using



k − means. Next the initial estimate of D is computed

using 15 while fixing H̃ to it’s initial value. This is fol-

lowed by H̃ computation using 16 while keeping D fixed

at it’s previously computed value. This process of alternat-

ing minimization is repeated till either the change in J falls

below a certain threshold ǫ or for a preset number of iter-

ations. We set ǫ = 10−3 and the threshold to 600 in our

experiments.

Speedup. Our overall method will be expensive, if the

base segmentations are expensive to compute. To remove

this bottleneck we use fast minimum variance quantization

to produce the base segmentations. The RGB color space

is split into a user specified number of levels such that each

level minimizes the variance of its constituent pixel values.

Thus the obtained segmentation accounts for both color and

textural variation in a naive fashion. We further find that

not imposing the smoothness constraints further improves

performance. This is primarily because computing the con-

straint matrix Θ proves to be expensive. In our experiments

we use an ensemble of 4 base segmentations obtained by

using two different color levels {6, 10} at different degrees

of smoothing.

4. Experiments and Results

We compare consensus segmentation against two other

widely used segmentation algorithms, the efficient graph

based segmentation (GBIS) algorithm [5] and the mean

shift algorithm [4]. GBIS treats the image as a graph. Seg-

mentation is achieved by splitting the graph into a collec-

tion of connected components. Two connected components

are merged when the weight of the edge connecting the two

components is less than the maximum weight in either com-

ponents’ minimum spanning tree, plus some constant user

controlled parameter M . The publicly available implemen-

tation [5] of this algorithm has two other tunable parame-

ters, σ a smoothing parameter and min the minimum num-

ber of pixels in segment. In this paper we fix σ = 0.8 and

vary M through {100,200,300,400,500} and min through

{20,50,100,300,500}.

The Mean Shift (MS) algorithm involves a mean shift

filtering of the image data followed by a clustering of the

filtered data. The mean shift filtering is a search for modes

of the underlying pdf of the image data. In this paper we

have used the open source EDISON [4] implementation of

the mean shift segmentation. The EDISON system con-

verts the original RGB image into the LUV space. The

mean shift filtering is carried out in a 5 dimensional fea-

ture space, containing the (x, y) image coordinates and the

LUV values. The algorithm has three tunable parameters

spatial bandwidth (hs), color bandwidth (hr) and min. We,

following popular trend [24] set hs = 7 and vary hr through

{3, 5, 7, 9, 11, 13, 15} and the range of min is chosen to be

the same as GBIS.

Our algorithms consensus and sped-up consensus fast-

Con have two tunable parameters. We apply a Gaussian

filter on our images, and the standard deviation of the fil-

ter σ is the first parameter, while the number of color clus-

ters C present in an image is the second parameter. σ is

varied through {0.75,1.0,1.75} for consensus and through

{2,4} for fastCon, while C varies from image to image. In

our experiments C took an integer value between 3 and 12

depending on the image.

For quantifying the performance of the segmentation

algorithms, we use the Probabilistic Rand Index (PRI)

proposed in [23]. We compare an image segmentation

Stest with a set of “ground truth" human segmentations

{H1,H2, ...,HH}. The human segmentations are obtained

from the Berkeley Image Segmentation Dataset [14], which

contains a test set of 100 images.

For completeness we briefly describe the computation

of PRI. A segmentation is considered “good" if it agrees

with the human segmentations provided. The PRI score in-

creases if the labels li and lj of two pixels i and j are the

same, i.e. if they are classified in the same segment of Stest,

and they are also classified in the same segment for a human

segmentation Hh. The score is hurt if this is not the case.

Formally, PRI is computed as:

PRI(Stest, {H1, ...,HH}) =
1

(

N
2

)

∑

i<j

[I(lS
test

i = lS
test

j )pij

+I(lS
test

i 6= lS
test

j )(1 − pij)]

(19)

Where, I is the identity function and

pij =
1

H

∑

i<j

[I(lSk

i = lSk

j )] (20)

PRI takes values in the range [0, 1], with a value of 0 re-

sulting when Stest and {H1, ...,HH} have no similarities,

and a value of 1 when Stest matches {H1, ...,HH} exactly.

The PRI values obtained for the three segmentation algo-

rithms as well as the best k−means base segmentation are

presented in Table 1. Figure 3 displays segmentations of a

representative subset of the Berkeley test images, for visual

comparison. The consensus algorithm significantly outper-

forms the best base segmentation,thus providing a quantita-

tive measure of utility of the consensus process. Consensus

also performs comparably with both MS and GBIS. Pre-

dictably (Figure 3), Consensus performs well when regions

of the image can be distinguished on the basis of color,

texture or some combination of the two. The sped up ver-

sion fastCon produces cheap and competitive but somewhat

worse segmentations. On a Intel core 2 duo machine with

4GB of RAM fastCon required 0.5 ± 0.015 seconds to ex-

ecute. The consensus took 0.2365 ± 0.02 seconds while



Image k=4,HS k=6,HS K=4,Tex k=6,Tex

k=4,CH k=6,CH Pre-consensed Image CS w/o smoothness const. CS w smoothness const.

Figure 2. An image from the Berkeley database, base segmentations and the resulting Consensus Segmentations(CS)

Segmentation Mean PRI Median PRI St. Deviation

Kmeans 0.6924 0.7094 0.11

MS 0.7627 0.8044 0.14

GBIS 0.7759 0.8024 0.13

Consensus 0.7806 0.7986 0.11

fastCon 0.7688 0.7964 0.11

Table 1. Comparison on the Berkeley test images.

creating the base segmentations took 0.2671 ± 0.002 sec-

onds. The algorithm was implemented using non-optimized

Matlab code.

Finally, Figure 4 displays examples where our algo-

rithms do not perform well. These usually correspond with

images with homogeneous color and texture patterns. In

such cases Consensus finds a large number of spurious seg-

ments while merging other semantically distinct segments

together, producing noisy segmentations.

5. Conclusion and Future Work

This paper presents a penalized non negative matrix fac-

torization framework for combining multiple image seg-

mentations. Our framework is agnostic of the underlying

algorithms and features used to create the base segmenta-

tions. It is thus able to seamlessly combine segmentations

derived using different modalities. A method to scale the

framework for large images is also presented. We find that

the performance of an ensemble of k-means segmentations

compares favorably against popular state of the art “bottom-

up” segmentation algorithms. Furthermore, we find that the

combination of rudimentary quantization based segmenta-

tion performs just as well as more sophisticated segmen-

tation schemes. These observations suggest that producing

better semantic segmentations would require “top down” in-

formation. This, in turn, necessitates the modeling of uncer-

tainty in both the objects present in an image and their sizes,

before a truly general semantic segmentation(of the image)

can be produced. These considerations would guide our fu-

ture work. We also plan to incorporate prior information

to bias the ensemble of base segmentations, such that more

favorable base segmentations receive higher weights. This

would lead to task specific image segmentation as opposed

to the general purpose segmentation framework proposed in

this paper.
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Figure 3. Images from the Berkeley test set and their segmentations
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Figure 4. Poorer Quality Segmentations.


