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• Items: stock brokers


• Label: fraudulent


• Relationships: phone calls


• Attributes: other observable item traits

- social network users, papers, movies, 
products, etc.


- buy product, sales rank, etc.,


- friendships, emails, citations,  
co-purchases, etc.

Relational Machine Learning
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Within-network relational 
machine learning



Within-Network Relational Machine Learning
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Learn model parameters        using  
the observed data

⇥Y

Infer (predict) remaining labels using the 
learned parameters        and available data⇥Y

Will Show:  
Learning/inference approximations prevent  

semi-supervised algorithms from converging

Will Develop/Demonstrate:  
Methods that model parameter uncertainty 

overcome approximation errors
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Collective Inference

ˆ

⇥Y = argmax

⇥Y

X

vi2VL

logPY (yi|YMBL(vi),xi,⇥Y )

• Relational Machine Learning 

- Approximate  
Learning: 

- Approximate 
Inference:


• Many conditional forms to choose from 
(e.g., Generative, Logistic) 

Background - Semi-Supervised Relational Learning
Labels Edges

Attributes

yi

yjxi

MB(vi)

M-Step:

E-Step: (For all unlabeled instances)

Composite Likelihood (GO)

Pseudolikelihood (GL)
ˆ

⇥Y = argmax

⇥Y

X

YU2YU

PY (YU )

X

vi2VL

logPY (yi| ˜YMB(vi),xi,⇥Y )

PY (yi|YMB(vi),xi,⇥Y )

P (Y|X,E,⇥Y )

yi

yjxi

MB(vi)

Semi-supervised Relational EM

(Xiang & Neville, 2009)

How do these approximations affect  
semi-supervised relational learning? 

Both learning and inference require 
approximations
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Collective Inference Approximation
• (Relational EM:)


• Over-Propagation Error 
- Both neighboring yellow

- Yellow neighbors are 

not predictive 
• Over-Correction

Impact of Approximations in  
Semi-Supervised Relational EM

M-Step:

E-Step: (For all unlabeled instances)

Composite Likelihood Approximation

ˆ

⇥Y = argmax

⇥Y

X

YU2YU

PY (YU )

X

vi2VL

logPY (yi| ˜YMB(vi),xi,⇥Y )

PY (yi|YMB(vi),xi,⇥Y )

??

? P (Purple|Neighbors) ⇡ 0.61

P (Purple|Purple Neighbor) ⇡ 0.96



• Does over propagation during prediction happen in real world, sparsely 
labeled networks?

Impact of Approximations in  
Semi-Supervised Relational Learning
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• Does over correction happen during parameter estimation for semi-
supervised relational learning for real world, sparsely labeled networks?

Impact of Approximations in  
Semi-Supervised Relational Learning

Relational Naive Bayes Relational Logistic Regression

Yes
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Relational Stochastic EM and 
Relational Data Augmentation

14

Parameters
Predictions

Fixed Point Stochastic

Fixed Point Relational EM —

Stochastic Relational 
Stochastic EM

Relational Data 
Augmentation



• Stochastic approximation to 
relational EM algorithm

• Sample from the joint conditional 

distribution of labels 
• Maximize the composite likelihood 

• Contrasts with Relational EM, which 
utilizes expectations of unlabeled items


• Average over the parameters to reduce 
the variance (Celex et al., 2001)


• Inference is still performed using a 
single, fixed point set of parameters

Relational Stochastic EM
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Parameters

Predictions

Fixed Point Stochastic

Fixed Point Relational EM —

Stochastic Relational 
Stochastic EM

Relational Data 
Augmentation

Alternate Between:

Gibbs sample of labels

Maximizing Parameters

Aggregate Parameters:

Final Inference:

Ỹt
U ⇠ P t

Y (YU |YL,X,E, ⇥̃t�1
Y )

˜

⇥

t
Y = arg max

⇥Y

X

vi2VL

logPY (yi| ˜Yt
MB(vi)

,xi,⇥Y )

⇥̂Y =
1

T

X

t

⇥̃t
Y

PY (YU |YL,X,E, ⇥̂Y )



• Data Augmentation is a Bayesian 
viewpoint of EM

- Parameters are random variables.

- Computes posterior predictive 

distribution (Tanner&Wong,1987)

• Developed a version for relational semi-

supervised learning

• Final inference is over a distribution 

of parameter values

• Requires prior distributions over the 

parameters and corresponding 
sampling methods

- RNB: Beta (conjunctive prior)

- RLR: Normal 

(Metropolis-Hastings sampler)

Relational Data Augmentation
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Parameters

Predictions

Fixed Point Stochastic

Fixed Point Relational EM —

Stochastic Relational 
Stochastic EM

Relational Data 
Augmentation

Alternate Between:

Gibbs sample of labels

Sample Parameters

Final Parameters:

Final Inference:

Ỹt
U ⇠ P t

Y (YU |YL,X,E, ⇥̃t�1
Y )

⇥̂Y =
1

T

X

t

⇥̃t
Y

Ŷt
U =

1

T

X

t

Ỹt
U

⇥̃t
Y ⇠ P t(⇥Y |Ỹt

U ,YL,X,E)
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• Compare on four real world networks

• Competing Models


- Independent

- Relational (No CI and CI)

- Relational EM

- Relational SEM 
- Relational DA 

• Conditional Models

- Relational Naive Bayes

- Relational Logistic Regression


• Error measures

- Zero-One Loss (0-1 Loss)

- Mean absolute error (MAE)

Experiments - Setup

19

Dataset Vertices Edges Attributes

Facebook 5,906 73,374 2

IMDB 11,280 426,167 28

DVD 16,118 75,596 28

Music 56,891 272,544 26



Experiments - DVD
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domains causes poor performance
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Naive Bayes Logistic Regression

Relational EM Relational EM

Relational DA Relational DA

Relational  
SEM

Relational Data Augmentation can outperform 
Relational Stochastic EM

(In Paper): Cast collective inference as a 
nonlinear dynamical system to  

analyze the convergence of Relational SEM

(Finding): Similar to Relational EM,  
Relational SEM can sometimes learn 

parameters that result in an unstable system
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• Findings 
- Fixed point approximation error led Relational EM to not converge

- Overpropagation and Overcorrection 
- (In Paper) Fixed point EM methods can result in unstable systems during 

inference 

• Developed 
- Relational Stochastic EM method has lower variance in parameter estimates

- Relational Data Augmentation for computing a posterior predictive 

distribution for the unlabeled instances

- Models the uncertainty over the parameter estimates, meaning it can 

outperform the Relational Stochastic EM approach

- Both work well in conjunction with Composite Likelihood approximation

- Both significantly outperformed a variety of competitors under a number of 

testing scenarios

Conclusions
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