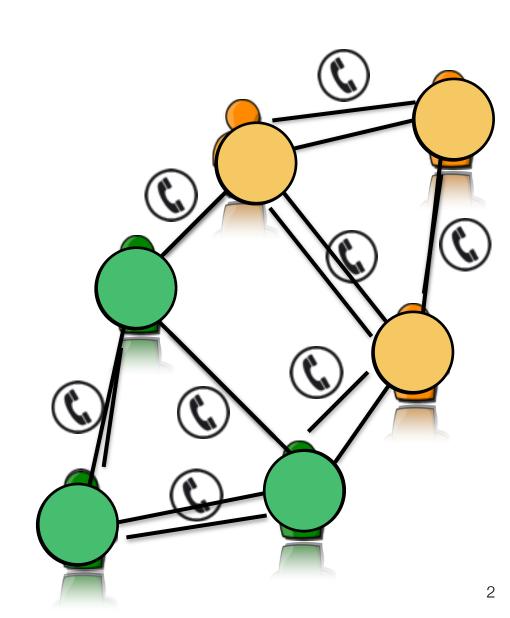


Relational Machine Learning

- Items: stock brokers
 - social network users, papers, movies, products, etc.
- Label: fraudulent
 - buy product, sales rank, etc.,
- Relationships: phone calls
 - friendships, emails, citations, co-purchases, etc.
- Attributes: other observable item traits

Within-network relational machine learning



With

Learn model parameters $\Theta_{\mathscr{Y}}$ using the observed data

Infer (predict) remaining labels using the learned parameters $\Theta_{\mathcal{Y}}$ and available data

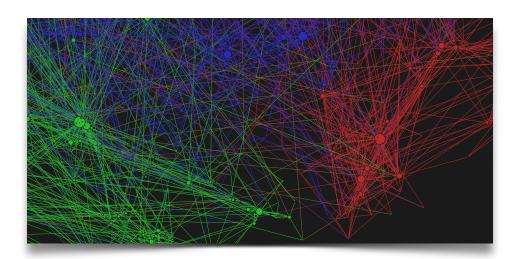
Will Show:

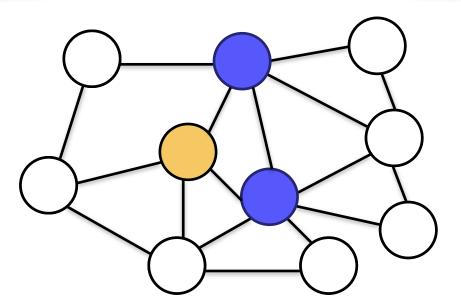
Learning/inference approximations prevent semi-supervised algorithms from converging

Will Develop/Demonstrate:

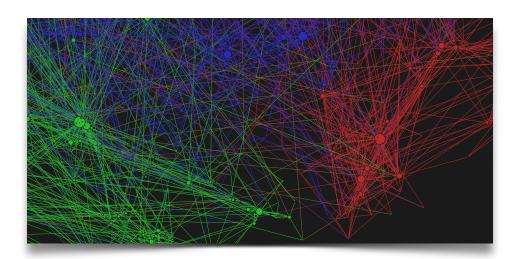
Methods that model parameter uncertainty overcome approximation errors

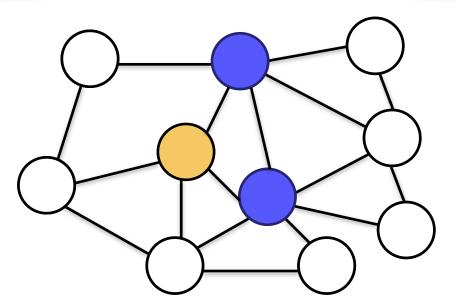
- Introduction
- Background: Semi-supervised
 Relational Machine Learning
- Analysis of Relational EM convergence in real world networks
- Relational Stochastic EM and Relational Data Augmentation
- Experiments
- Conclusions



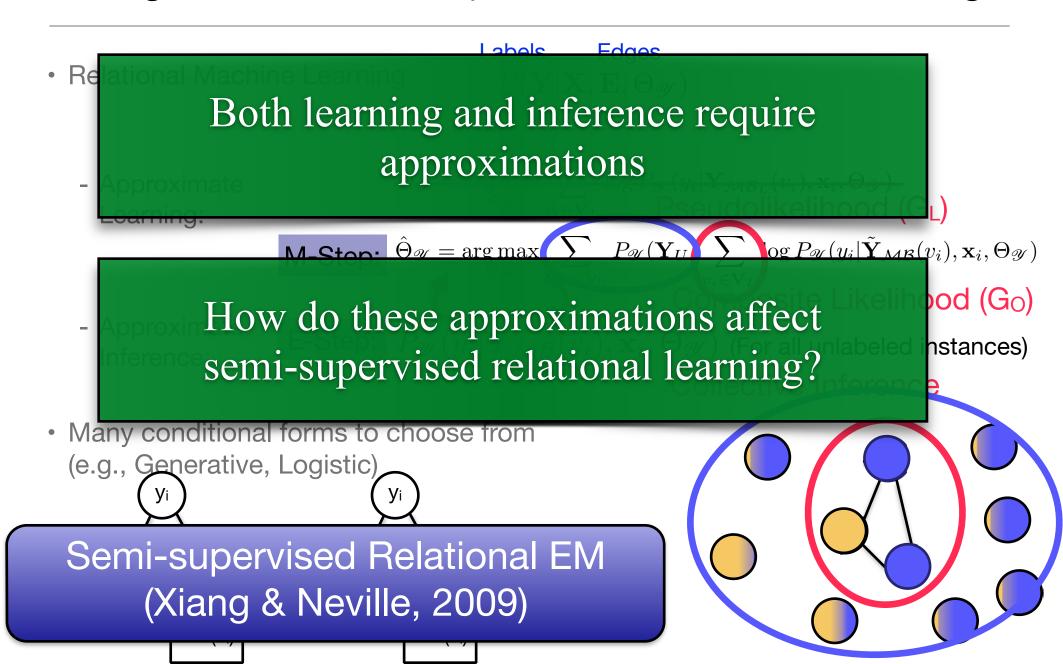


- Introduction
- Background: Semi-supervised
 Relational Machine Learning
- Analysis of Relational EM convergence in real world networks
- Relational Stochastic EM and Relational Data Augmentation
- Experiments
- Conclusions

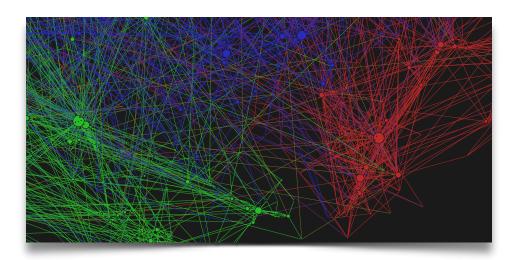


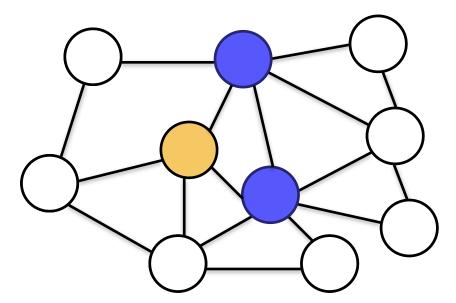


Background - Semi-Supervised Relational Learning

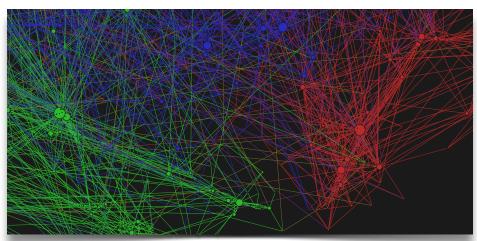


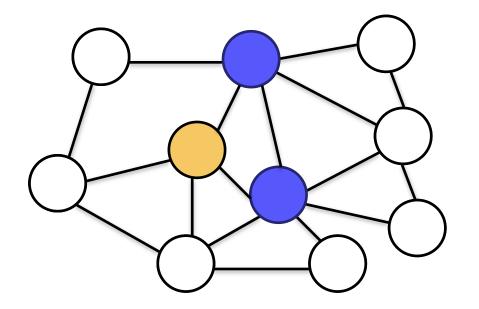
- Introduction
- Background: Semi-supervised
 Relational Machine Learning
- Analysis of Relational EM convergence in real world networks
- Relational Stochastic EM and Relational Data Augmentation
- Experiments
- Conclusions

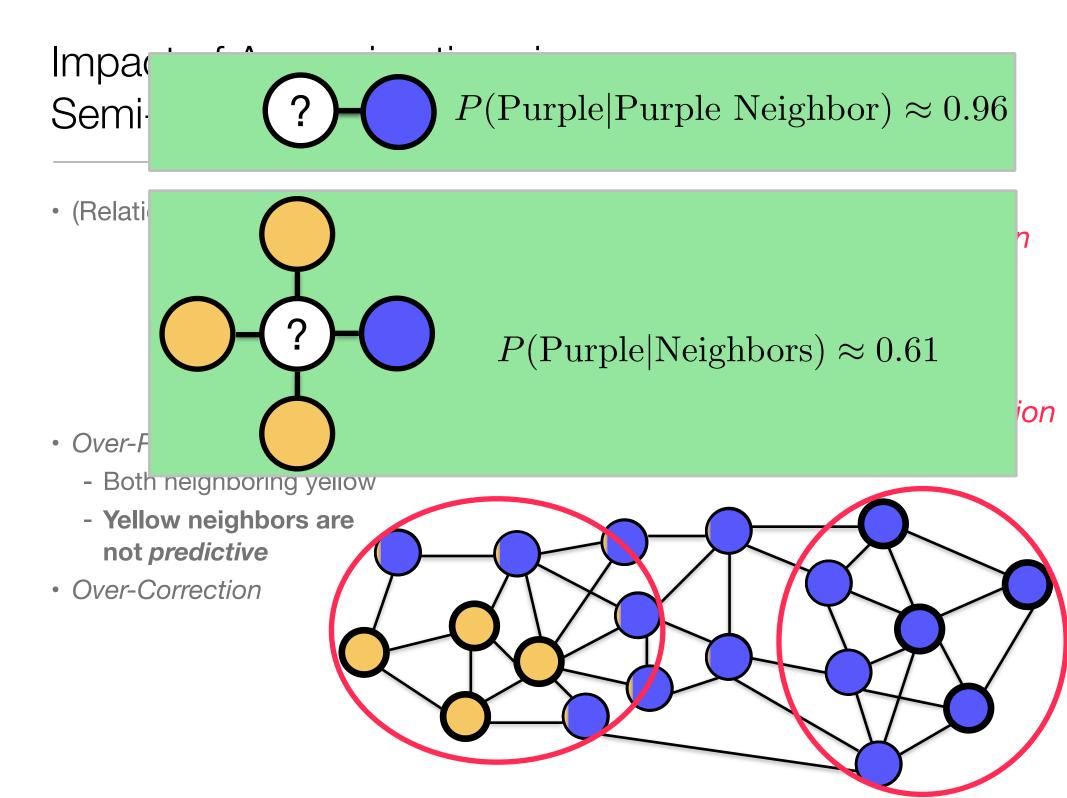




- Introduction
- Background: Semi-supervised
 Relational Machine Learning
- Analysis of Relational EM convergence in real world networks
- Relational Stochastic EM and Relational Data Augmentation
- Experiments
- Conclusions

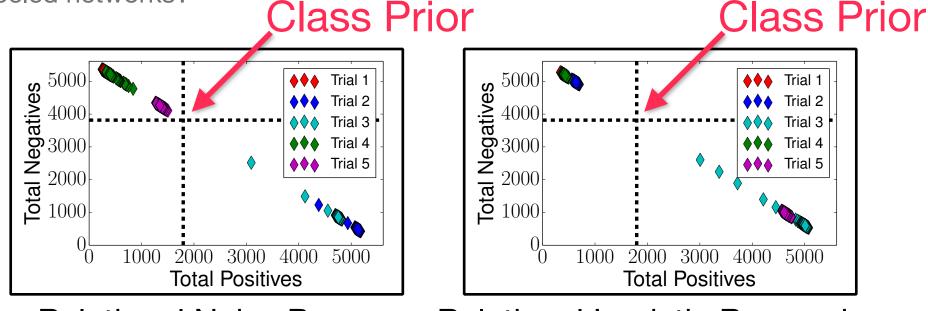






Impact of Approximations in Semi-Supervised Relational Learning

Does over propagation during prediction happen in real world, sparsely labeled networks?

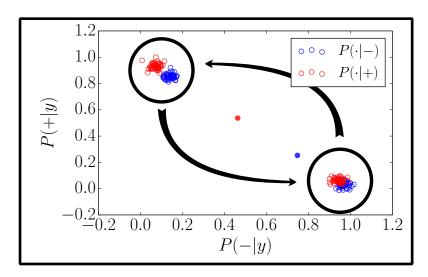


Relational Naive Bayes

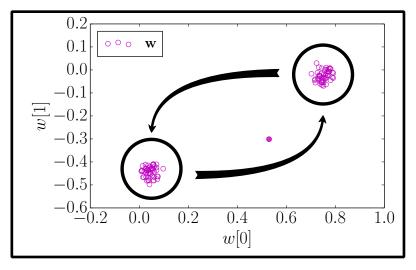
Relational Logistic Regression

Impact of Approximations in Semi-Supervised Relational Learning

 Does over correction happen during parameter estimation for semisupervised relational learning for real world, sparsely labeled networks?

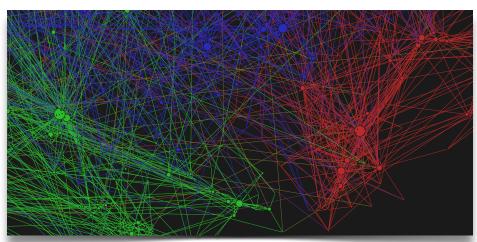


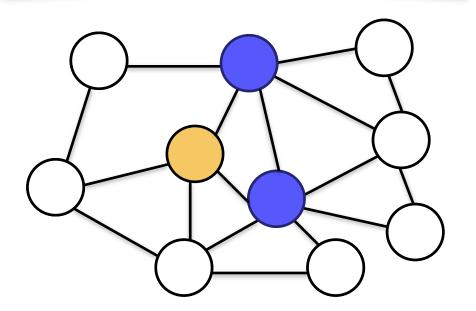
Relational Naive Bayes



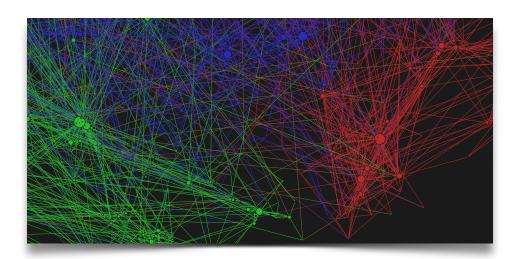
Relational Logistic Regression

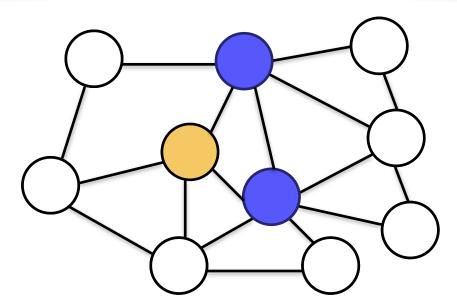
- Introduction
- Background: Semi-supervised Relational Machine Learning
- Analysis of Relational EM convergence in real world networks
- Relational Stochastic EM and Relational Data Augmentation
- Experiments
- Conclusions





- Introduction
- Background: Semi-supervised
 Relational Machine Learning
- Analysis of Relational EM convergence in real world networks
- Relational Stochastic EM and Relational Data Augmentation
- Experiments
- Conclusions





Relational Stochastic EM and Relational Data Augmentation

Parameters	Predictions		
	Fixed Point	Stochastic	
Fixed Point	Relational EM	_	
Stochastic	Relational Stochastic EM	Relational Data Augmentation	

Relational Stochastic EM

- Stochastic approximation to relational EM algorithm
 - Sample from the joint conditional distribution of labels
 - Maximize the composite likelihood
- Contrasts with Relational EM, which utilizes expectations of unlabeled items
- Average over the parameters to reduce the variance (Celex et al., 2001)
- Inference is still performed using a single, fixed point set of parameters

Parameters	Predictions		
	Fixed Point	Stochastic	
Fixed Point	Relational EM	-	
Stochastic	Relational Stochastic EM	Relational Data Augmentation	

Alternate Between:

Gibbs sample of labels $\tilde{\mathbf{Y}}_{U}^{t} \sim P_{\mathscr{Y}}^{t}(\mathbf{Y}_{U}|\mathbf{Y}_{L},\mathbf{X},\mathbf{E},\tilde{\Theta}_{\mathscr{Y}}^{t-1})$

Maximizing Parameters

$$\tilde{\Theta}_{\mathscr{Y}}^{t} = \underset{\Theta_{\mathscr{Y}}}{\arg\max} \sum_{v_{i} \in \mathbf{V}_{L}} \log P_{\mathscr{Y}}(y_{i} | \tilde{\mathbf{Y}}_{\mathcal{MB}(v_{i})}^{t}, \mathbf{x}_{i}, \Theta_{\mathscr{Y}})$$

Aggregate Parameters: $\hat{\Theta}_{\mathscr{Y}} = \frac{1}{T} \sum_{t} \tilde{\Theta}_{\mathscr{Y}}^{t}$

Final Inference: $P_{\mathscr{Y}}(\mathbf{Y}_U|\mathbf{Y}_L,\mathbf{X},\mathbf{E},\hat{\Theta}_{\mathscr{Y}})$

Relational Data Augmentation

- Data Augmentation is a Bayesian viewpoint of EM
 - Parameters are random variables.
 - Computes *posterior* predictive distribution (Tanner&Wong,1987)
- Developed a version for relational semisupervised learning
- Final inference is over a distribution of parameter values
- Requires prior distributions over the parameters and corresponding sampling methods
 - RNB: Beta (conjunctive prior)
 - RLR: Normal (Metropolis-Hastings sampler)

Parameters	Predictions Predictions Predictions		
	Fixed Point	Stochastic	
Fixed Point	Relational EM	_	
Stochastic	Relational Stochastic EM	Relational Data Augmentation	

Alternate Between:

Gibbs sample of labels $\tilde{\mathbf{Y}}_{U}^{t} \sim P_{\mathscr{Y}}^{t}(\mathbf{Y}_{U}|\mathbf{Y}_{L},\mathbf{X},\mathbf{E},\tilde{\Theta}_{\mathscr{Y}}^{t-1})$

Sample Parameters $\tilde{\Theta}_{\mathscr{Y}}^t \sim P^t(\Theta_{\mathscr{Y}}|\tilde{\mathbf{Y}}_U^t,\mathbf{Y}_L,\mathbf{X},\mathbf{E})$

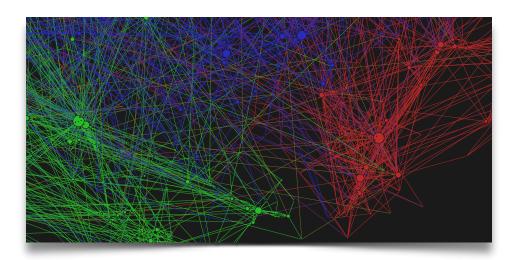
Final Parameters:

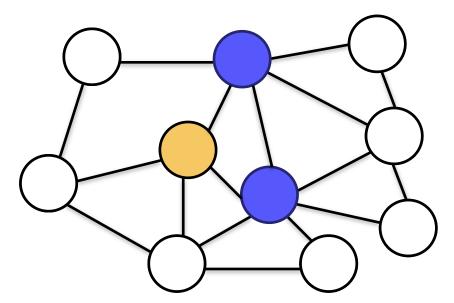
$$\hat{\Theta}_{\mathscr{Y}} = \frac{1}{T} \sum_{t} \tilde{\Theta}_{\mathscr{Y}}^{t}$$

Final Inference:

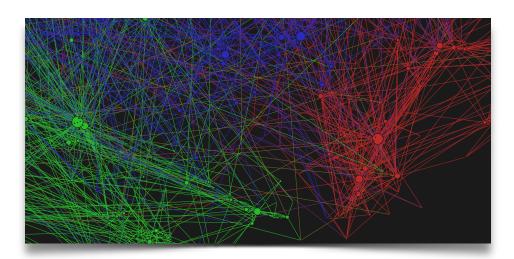
$$\hat{\mathbf{Y}}_{U}^{t} = \frac{1}{T} \sum_{t} \tilde{\mathbf{Y}}_{U}^{t}$$

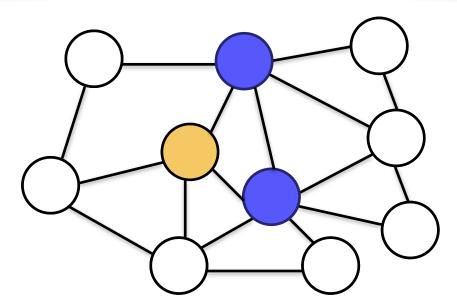
- Introduction
- Background: Semi-supervised
 Relational Machine Learning
- Analysis of Relational EM convergence in real world networks
- Relational Stochastic EM and Relational Data Augmentation
- Experiments
- Conclusions





- Introduction
- Background: Semi-supervised
 Relational Machine Learning
- Analysis of Relational EM convergence in real world networks
- Relational Stochastic EM and Relational Data Augmentation
- Experiments
- Conclusions



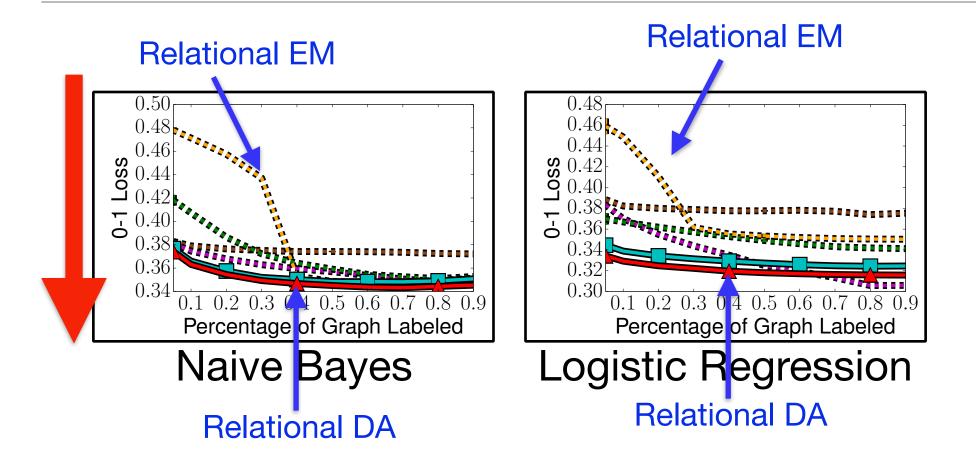


Experiments - Setup

- Compare on four real world networks
- Competing Models
 - Independent
 - Relational (No Cl and Cl)
 - Relational EM
 - Relational SEM
 - Relational DA
- Conditional Models
 - Relational Naive Bayes
 - Relational Logistic Regression
- Error measures
 - Zero-One Loss (0-1 Loss)
 - Mean absolute error (MAE)

Dataset	Vertices	Edges	Attributes
Facebook	5,906	73,374	2
IMDB	11,280	426,167	28
DVD	16,118	75,596	28
Music	56,891	272,544	26

Experiments - DVD



Relational EM's instability in sparsely labeled domains causes poor performance

Experiments - Facebook

Relational EM

Re

Relational EM

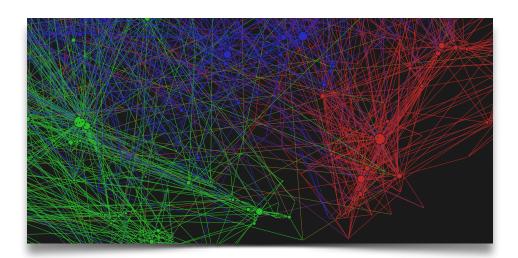
Relational Data Augmentation can outperform Relational Stochastic EM

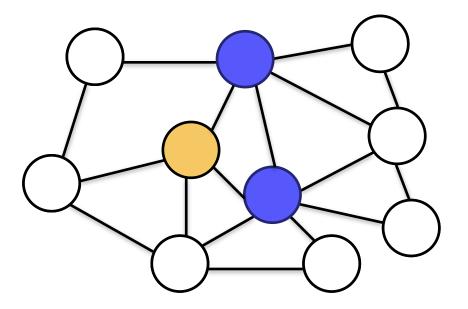
(In Paper): Cast collective inference as a nonlinear dynamical system to analyze the convergence of Relational SEM

Relational DA Relational DA

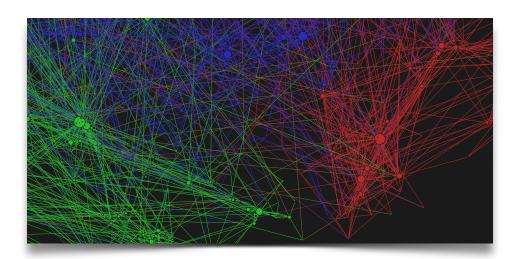
(Finding): Similar to Relational EM, Relational SEM can sometimes learn parameters that result in an unstable system

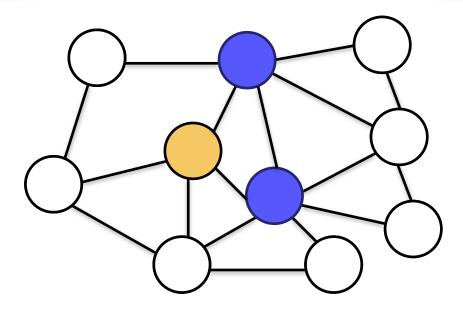
- Introduction
- Background: Semi-supervised
 Relational Machine Learning
- Analysis of Relational EM convergence in real world networks
- Relational Stochastic EM and Relational Data Augmentation
- Experiments
- Conclusions





- Introduction
- Background: Semi-supervised Relational Machine Learning
- Analysis of Relational EM convergence in real world networks
- Relational Stochastic EM and Relational Data Augmentation
- Experiments
- Conclusions





Conclusions

Findings

- Fixed point approximation error led Relational EM to not converge
- Overpropagation and Overcorrection
- (In Paper) Fixed point EM methods can result in unstable systems during inference

Developed

- Relational Stochastic EM method has lower variance in parameter estimates
- Relational Data Augmentation for computing a posterior predictive distribution for the unlabeled instances
 - Models the uncertainty over the parameter estimates, meaning it can outperform the Relational Stochastic EM approach
- Both work well in conjunction with Composite Likelihood approximation
- Both significantly outperformed a variety of competitors under a number of testing scenarios

Thank you!

jpfeiffer@purdue.edu

neville@cs.purdue.edu

paul.n.bennett@microsoft.com

Jennifer Neville

Paul Bennett