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Abstract—The recent interest in modeling complex networks
has fueled the development of generative graph models, such as
Kronecker Product Graph Model (KPGM) and mixed KPGM
(mKPGM). The Kronecker family of models are appealing
because of their elegant fractal structure, as well as their ability
to capture important network characteristics such as degree,
diameter, and (in the case of mKPGM) clustering and population
variance. In addition, scalable sampling algorithms for KPGMs
made the analysis of large-scale, sparse networks feasible for
the first time. In this work, we show that the scalable sampling
methods, in contrast to prior belief, do not in fact sample from
the underlying KPGM distribution and often result in sampling
graphs that are very unlikely. To address this issue, we develop
a new representation that exploits the structure of Kronecker
models and facilitates the development of novel grouped sampling
methods that are provably correct. In this paper, we outline
efficient algorithms to sample from mKPGMs and KPGMs
based on these ideas. Notably, our mKPGM algorithm is the
first available scalable sampling method for this model and
our KPGM algorithm is both faster and more accurate than
previous scalable methods. We conduct both theoretical analysis
and empirical evaluation to demonstrate the strengths of our
algorithms and show that we can sample a network with 75
million edges in 87 seconds on a single processor.

I. INTRODUCTION

Due to the recent interest in modeling complex systems
as networks, considerable research has focused on developing
generative graph models to understand the underlying proper-
ties of these systems (see e.g., [1], [2], [3], [4]). Here the aim
has been to develop graph models that can match common
characteristics of real world networks (e.g., skewed degree
distributions, local clustering). Since networks generated from
the same process exhibit similar (but variable) characteristics,
recent work has focused on modeling statistical distributions
of network structure. Researchers have developed statistical
methods to model the network distribution, along with algo-
rithms to learn model parameters given an observed network.
These models are used for a wide variety of tasks—for
example, by learning a model of “normal” network behavior,
we can use the model to test for network anomalies [5].

Most of the statistical models of graphs define a Nv ×Nv
probability matrix P , where Nv is the number of nodes and
Pij=πij represents the probability of an edge between nodes
i and j. By sampling from P , models can generate networks
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from the underlying distribution. One of the first proposed
models is the Erdös-Rényi graph model [6]. This model defines
Pij = p ∀ i, j ∈ {1, · · · , Nv}, meaning every edge in the
network has equal probability. Recent models (e.g., [7], [8],
[9], [10]) consider different probabilities among edges. For
example, the Chung-Lu model defines the probability of an
edge to be proportional to the degree of the incident nodes [7].
The Kronecker Product Graph Model (KPGM) [8] and mixed-
KPGM [9] are fractal models parameterized by a small “seed”
matrix, which use repeated Kronecker multiplications to pro-
duce the probabilities in P .

Many of the recent statistical models successfully reproduce
important network characteristics in their samples. However,
straightforward algorithms to generate networks, which sample
edges independently using a Bernoulli distribution for every
pair of nodes, have a time complexity that is quadratic in the
number of nodes (i.e., O(N2

v )). We refer to these pairwise
sampling algorithms, which clearly cannot scale to large net-
works with millions of nodes and edges, as Independent Prob-
ability methods. To more efficiently model sparse real-world
networks (e.g., where Ne << N2

v ), researchers have devel-
oped scalable Edge-by-edge sampling algorithms, which only
consider where to place a set of Ne sampled edges through
the network. For example KPGMs [11] and MAGMs [12]
have associated Edge-by-edge sampling algorithms, that can
generate a network in time O(log(Nv) ·Ne).

Notably, the availability of scalable sampling algorithms
for KPGMs made analysis of large-scale, sparse networks
feasible for the first time [11]. However, in contrast to prior
expectations—scalable sampling algorithms (using edge-based
sampling) do not correctly draw from the underlying model
distribution and this often produces network samples that are
very unlikely. Specifically, we prove that Edge-by-edge KPGM
sampling algorithms model a different space of graphs, and
they do not sample from the correct distribution even when
we constrain the space of graphs to be equivalent.

To address these issues, we develop provably correct sam-
pling methods for both KPGMs and mKPGMs, based on a key
insight which uses Grouped Probabilities. The methods center
on a novel representation for the Kronecker family of models,
which allows us to exploit their fractal structure to group
together pairs of nodes that have the same edge probability
(e.g., i, j, u, v s.t. Pij = Puv). The edges are sampled for each



group independently, by first sampling a Binomial to determine
the number of edges for the group, and subsequently placing
them over the pairs in the group. This process generates
networks from the true underlying distribution and we develop
efficient implementations using well-known Normal/Poisson
approximations for sampling from Binomial distributions.

We conduct both theoretical analysis and empirical eval-
uation to demonstrate the strengths of our algorithms. In
particular, we demonstrate the inaccuracies of Edge-by-edge
algorithms as well as the advantages of our proposed algo-
rithms. Notably, our Grouped Probability algorithms sample
networks with over 8 million vertices and 75 million edges on
a single processor in 87 seconds.

II. BACKGROUND

We review the details of Kronecker family models
(KPGM [8] and mKPGM [9]) below. In general, Kronecker
models define a probability matrix P for graphs through a
fractal structure. A constant sized “seed” matrix (e.g., 2x2)
parameterizes the model, while repeated Kronecker multipli-
cations of the parameters define the full P .

A. Kronecker Product Graph Model
Model: KPGM models a distribution of networks via a set of
N2
v independent edge probabilities. Although the edge proba-

bilities are independent, the parameter values are recursively
constructed based on Kronecker multiplications, and thus
exhibit self-similarity. Specifically, KPGM utilizes a small,
constant size b× b seed matrix P1 =Θ, where each cell value
represents a probability parameter. Typically b = 2 or 3, e.g.,

P1 =

[
θ11 θ12

θ21 θ22

]
.

To define a probability matrix P to model distributions of
large scale networks, KPGM takes the Kronecker product of
P1 with itself K−1 times. Given the small number of seed
parameters and the fractal structure of the model, multiple
probabilities are repeated in P . Specifically, a network with
bK nodes is modeled with PK = P [K]

1 = P [K−1]
1

⊗P1 =
P1 ⊗ . . .⊗ P1︸ ︷︷ ︸
K−1 times

.

Sampling: Let G= (V,E) be a graph with V={1,. . ., Nv},
where Nv=bK and K ∈ N, and E={E11, E12, . . . , ENvNv},
where Eij is a Bernoulli random variable and Ne =∑Nv
i=1

∑Nv
j=1Eij . KPGM samples a graph G by performing in-

dependent Bernoulli trials for each pair (u, v) with probability
PK (u, v) = πuv . If the trial for (u, v) results in a success,
KPGM places an edge (u, v) into E (Euv=1⇒ Euv∈E).

Complexity: Since PK comprises a set of independent edge
probabilities, to sample a network from the model it is
sufficient to sample an edge for every pair of nodes: Euv ∼
Bernoulli(πuv). Thus a straightforward sampling implemen-
tation will have time complexity O(N2

v ), which is not scalable
for large networks.

Space of graphs: We will refer to the space of graphs (i.e.,
all possible graphs) modeled by a specific KPGM as GKo ,

where o stands for the original model and K stands for KPGM.
Formally, GKo = {G = (V,E) such that (|V| = Nv = bK)
and (0 ≤ |E| = Ne ≤ N2

v ) and (@ Euv, Eij ∈ E : u = i
and v = j) and (∀ Euv ∈ E, 1 ≤ u, v ≤ Nv)}. KPGM
defines a probability distribution over this space of graphs,
denoted PKo . Using these definitions, we can see that the
KPGM generation process samples a network G from PKo ,
where PKo (G) : GKo → [0, 1].

B. mixed Kronecker Product Graph Model

Model: mKPGM models a distribution of networks via a set
of dependent edge probabilities [9]. Similar to KPGMs, the
mKPGM parameters values are recursively constructed based
on Kronecker multiplications of a small b×b matrix P1, where
each cell value represents a probability parameter. However,
in addition to the Θ and K parameters from KPGM, mKPGM
incorporates an additional parameter ` ∈ [1, 2, · · · ,K], which
ties parameters to create edge dependencies.

In particular, mKPGM models a network with bK nodes
with R(· · ·R(R(R (P`) ⊗Θ)⊗Θ)⊗ · · · ⊗Θ)︸ ︷︷ ︸

K−`−1 times

⊗Θ, where

P` is a KPGM probability matrix and the function R(·) refers
to a realization (sampling) of the probability matrix prior to the
Kronecker multiplication. These realizations tie the edges and
produces dependencies among them. The value of ` specifies
the level of tying and affects the variability of the generated
networks (low ` values imply higher variability).

We note that KPGM is a special case of mKPGM (where
` = K) and mKPGM preserves the same marginal probabili-
ties of edges as a KPGM with equal Θ and K parameters, but
the mKPGM edge probabilities are no longer independent.

Sampling: To generate networks with Nv = bK nodes,
mKPGM initially uses a KPGM (parameterized by Θ and `)
to sample an intermediate graph G`. Next, mKPGM computes
a Kronecker product between G` and Θ to produce a new
probability matrix P`+1 = G` ⊗ Θ. Then, mKPGM samples
G`+1 from P`+1 and uses this for the next Kronecker product.
The process of sampling a graph before computing subsequent
Kronecker products produces dependencies among the sam-
pled edges. The algorithm repeats this process K−`−1 times
to generate the final network GK .

Complexity: A straightforward implementation of mKPGM
sampling has three steps which affect its time complexity:
the generation of the network G` = (V`,E`) using KPGM
(O(N2

` ) where N` = |V`|); the number of Bernoulli trials
used to generate the network G`+k (O(b2 · |E +̀k−1|)); and
the complexity of the Kronecker multiplications (O(N2

v ) for
the final Kronecker multiplication). This produces a total
complexity of O(N2

v ), the same as above for the KPGM.

Space of graphs: As with KPGM, the network generation pro-
cess samples from a specific distribution defined by the model.
We useM to refer to the mKPGM, and the generation process
samples G ∼ PMo (G), where PMo (G) defines a distribution
over the space of graphs GMo . (Note that GMo ≡ GKo .)



III. GROUP PROBABILITY SAMPLING FOR KPGM

This section and the next outline new Kronecker model
representations and develop our new Group Probability (GP)
sampling algorithms for KPGM and mKPGM, respectively.
The new algorithms correctly sample networks from the under-
lying probability distribution defined by the original Kronecker
models and our implementations generate networks in time
proportional to the number of edges.

A. Representation

KPGM defines the final probability matrix PK through
K−1 Kronecker multiplications of the parameter matrix Θ
with itself. Importantly, due to the commutative property of
multiplication, a single probability q can appear in many places
in PK (e.g., q = πij = πkl where i, j 6= k, l). For example,
πi1j1 =θ11θ12θ11 has the same probability as πi2j2 =θ11θ11θ12

and πi3j3 =θ12θ11θ11, but their positions in PK are different.
Thus, rather than sampling a Bernoulli for each πi·j· , we can
sample the total number of edges for each unique probability
value using a binomial distribution. Then, we determine the
positions to place the sampled number of edges from among
the set of ij pairs with the associated probability value.

Before describing the implementation of our GP sampling
algorithm, we create a new representation for the probability of
the edges. Given b, K, and Θ, the probability of an edge in the
original model (pKo (Euv)=πuv) is equal to the multiplication
of K different θij . Let Γuv be a matrix of size b×b where
each element γij represents the number of times θij occurs in
the calculation of πuv . Then pKo (Euv)=πuv=θγ1111 θ

γ12
12 · · ·θ

γbb
bb

where each γij is an integer in the range [0, 1,· · ·,K] and∑b
i=1

∑b
j=1 γij = K.

This new representation makes it easy to group together
cells in the matrix PK that have the same probability value
and reduce the N2

v probabilities in PK to a smaller set of
unique probabilities. Let U be the set of unique probability
values in PK , then |U| is the number of possible com-
binations of integer values of γij subject to the constraint∑b
i=1

∑b
j=1 γij = K. This corresponds to a k-combination

with repetitions problem [13], where we have to pick K
elements with replacement from the set {θ11, θ12, · · · , θbb},
obtaining

|U| =
(
b2 +K − 1

K

)
(1)

Let π′k = θ
γ11k
11 θ

γ12k
12 · · · θγbbkbb be the kth unique probability

in U, where γijk is γij in Γk. Then, the number of times Tk
of a particular probability π′k repeating in PK (i.e. the ij pairs
such that πij = π′k), is equal to all the possible permutations
of the different elements in Γk :

Tk =
K!

γ11k !γ12k ! · · · γbbk !
(2)

For example, given Θ, b = 2 and K = 3, then P3 has
total of 64 cells. From these cells, |U| =

(
22+3−1

3

)
= 20

of them correspond to unique probability values. Consider an

Algorithm 1 Group Probability Sampling for KPGM
Require: Θ, K, b

1: V = {1, · · · , bK},E = {}
2: Construct U, the set of unique probability values π′k
3: for k = 1; k + +; k ≤ |U| do
4: Obtain π′k the k-th unique probability of the set U
5: Let Γk=[γ11k , γ12k , · · · , γbbk ] s.t. π′k=θ

γ11k
11 θ

γ12k
12 · · · θ

γbbk
bb

6: Calculate Tk = K!
γ11k !γ12k !···γbbk !

7: Draw xk ∼ Bin(Tk, π
′
k)

8: countEdge=0
9: Let Λi = [i1, i2, · · · , iK ] and Λj = [j1, j2, · · · , jK ] be θ

indexes s.t.
∏K
l=1 θΛi(l)Λj(l) = π′k.

10: while countEdge < xk do
11: Let σ be a random permutation of the vector [1, 2, · · · ,K]
12: u, v =

∑K
l=1(Λi,j(σ(l))− 1) · bl−1 + 1

13: if Euv /∈ E then
14: countEdge++
15: E = E + {Euv}
16: Return G = (V,E)

example unique probability πk = θ11θ11θ12 from P3, then

π′k = θ2
11θ

1
12θ

0
21θ

0
22, Γk =

[
2 1
0 0

]
, and Tk = 3!

2!1!0!0! = 3.

B. Algorithm

We can use this new representation to sample a network
in three steps. First, calculate U. Second, for each unique
probability π′k ∈ U, sample the number of edges xk using a
Binomial distribution (P (Xk=xk) ∼ Bin(n, p) where n=Tk
and p=π′k). Third, place the xk sampled edges uniformly at
random among the cells with probability π′k.

Algorithm 1 describes the pseudocode of the GP sampling
process. Line 2 constructs U (first step). Line 7 samples xk
(second step). Before sampling xk, lines 4 to 6 determine
π′k, Γk, and Tk respectively. Lines 9 to 15 place the edges
(third step). Line 9 determines the indexes of the θs utilized
to calculate π′k. Line 11 determines a random permutation of
σ = [1, 2, · · · ,K], which is used to calculate the indexes u
and v in line 12. Lines 13 to 15 add Euv to E if it has not
already been sampled. Line 10 to 15 repeat the loop until xk
edges are placed in the group.

C. Complexity

The time complexity of the algorithm is as follows. Con-
struction of the set of unique probabilities costs O(K · |U|).
Line 4 costs O(1) and lines 5 and 6 have a complexity of
O(K). For line 7, naive sampling from a Binomial distribution
would be O(Tk) and result in an overall time complexity
of O(N2

v )). However, applying well-known Normal/Poisson
approximations for sampling from Binomial distributions, we
reduce the time complexity of line 7 to O(1). In lines 11 and
12, obtaining the vectors Λ· is O(K). The random permutation
and the calculation of the indexes are also O(K). Finally, the
edge rejection process has a constant complexity O(1).

Using the above analysis, we proceed to calculate the total
complexity of the algorithm. An iteration of lines 10 to 15 has
a complexity of O(3K · (xk+x′k)) where x′k corresponds to
the number of rejected edges (when Euv is generated but is



already in E). In the worst case, when π′k = 0.5, E[x′k] =
xk and the complexity is O(K · xk). The outside loop has a
complexity of O(1+2K+1+K·xk)=O(K·xk). Incorporating
the summation over |U|, and adding the complexity of line 2,
we obtain a total complexity of O

(
K ·|U|+K

∑|U|
i=1 xk

)
.

It is easy to prove by induction that |U| ≤ Nv for large K
(i.e., K ≥ 7, 10 for b= 2, 3, respectively). To understand the
behavior of |U| and Nv with respect to large K, we empirically
demonstrate that |U| ≤ Nv for b = 2, 3 in the left plot of
Figure 1. Finally, considering that

∑|U|
i=1 xk = Ne, then the

final complexity is O (K ·Nv +K ·Ne) = Õ(Ne).

D. Analysis

The GP sampling algorithm is also a sampling mechanism
from a specific probability distribution. Let GKgp be the space
of graphs for the GP sampling process (gp refers to group
probability algorithm), defined by {G = (V,E) such that
(Nv = bK) and (0 ≤ Ne ≤ N2

v ) and (@ Euv, Eij ∈ E : u =
i ∧ v = j) and (∀ Euv ∈ E, 1 ≤ u, v ≤ Nv)}. Note that
GKgp ≡ GKo . Then, the generation of a network is sampling G
from PKgp(G), where PKgp(G) : GKgp → [0, 1].

With these definitions, the next theorems prove that our GP
algorithm samples networks from the original KPGM proba-
bility distribution. All proofs are provided in the appendix.

Theorem 1. Given a valid KPGM with probability pKo (·)
and the GP sampling algorithm from Alg. 1, with probability
pKgp(·), then ∀ u,v pKo (Euv) = πuv = π′uv = pKgp(Euv).

Theorem 2. Given a valid KPGM with probability pKo (·)
and the GP sampling algorithm from Alg. 1, with probability
pKgp(·), then ∀G pKo (G)=pKgp(G), thus PKo (G)=PKgp(G).

Fig. 1. Left: |U| and Nv = bK for b = 2, 3 with respect to K. Right:
Venn diagram of the space of graphs for X > 1.

IV. GROUP PROBABILITY SAMPLING FOR MKPGM

Our new edge representation can also be used for mKPGMs.
As mentioned previously, to date there is no scalable gen-
eration algorithm for mKPGMs due to dependencies among
the Kronecker multiplications. But by generating G` using
Algorithm 1, and then sampling each layer based on the new
representation, we can generate a mKPGM network in Õ(Ne).

A. Representation

Given Θ, K, and `, the original mKPGM generation
algorithm samples a network as follows: first, it generates

Algorithm 2 Group Probability Sampling for mKPGM
Require: Θ, K, b, `

1: VK = {1, · · · , bK}
2: Generate G` using algorithm 1 with parameters Θ, `, b
3: Construct U = {θ11, θ12, · · · , θbb}
4: for k = `+ 1; k + +; k ≤ K do
5: Ek = {}
6: Let Λq = [q1, q2, · · · , qNek−1

] and
Λr = [r1, r2, · · · , rNek−1

] be indexes of edges in Gk−1

7: for i = 1; i+ +; i ≤ b do
8: for j = 1; j + +; j ≤ b do
9: Obtain θij {a unique probability value in U}

10: Calculate Tij = Nek−1 = |Ek−1|
11: Draw xijk ∼ Bin(Tij , θij)
12: Let σ be a random permutation of vector [1, 2,· · ·, Nek−1 ]
13: for m = 1;m+ +;m ≤ xijk do
14: u, v = (Λq,r(σ(m))− 1) · b+ i
15: Ek = Ek + {Euv}
16: Return GK = (VK ,EK)

G` = (V`,E`) with |E`| = Ne` using KPGM. Then, it
generates each layer from G`+k to GK by calculating P`+k =
G`+k−1 ⊗ Θ and sampling from it. P`+k is the Kronecker
multiplication between a binary matrix (the adjacency matrix
for G`+k−1) and Θ. Consequently, each P`+k has b2 = |Θ|
unique positive probability values (U = {θ11, θ12, · · · , θbb}).
Moreover, each unique positive probability value occurs ex-
actly Ne`+k−1

times in the matrix.

B. Algorithm

Now, we can sample a network as follows: sample G`
using GP sampling (Alg. 1). Then, sample each layer G`+k in
three steps: first, determine U={θ11, θ12, · · · , θbb}, the set of
unique probabilities in P`+k. Second, for each θij ∈ U sample
the number of edges xijk ∼ Bin(Ne`+k−1

, θij). Third, place
the xijk sampled edges among the cells with probability θij .
Last, return the final layer GK as the generated network.

In Algorithm 2, we show the pseudocode of our GP sam-
pling algorithm. The algorithm generates the initial G` using
Algorithm 1 in line 2, and constructs U in line 3. Lines 4
to 15 iteratively generates the remaining layers ` + 1 to K.
Line 6 obtains the indexes of edges from G`+k−1. Lines 7
and 8 iterate over the set U. Before sampling xijk using the
Binomial distribution in line 11, lines 9 and 10 determine θij
and Tij . To avoid collisions, the xijk edges are located based
on the edge positions of G`+k−1. To do this, in line 12 we
randomly permute the vector σ = [1, 2, · · · , Nek−1

]. Finally,
lines 14 to 15 calculate the new indexes using the first xijk
edges of G`+k−1 based on the random permutation of σ.

C. Complexity

The overall complexity for the GP sampling for mKPGM is
Õ(Ne). The complexity of line 2 is O(`(Nv`+Ne`)). In line 6,
the index vectors can be constructed in O(Nek−1

). While lines
9, 10, 14 and 15 are O(1) (Θij , Tij , calculation of indexes,
and adding the edge to the network), lines 11 are 12 have
complexity O(Nek−1

) (sampling from a Binomial distribution,
and the random permutation).



Using the above analysis, we can calculate the complexity
of the entire algorithm. The sampling and placement of xijk
edges (lines 7 to 15) is O(2b2 ·Nek−1

+
∑b
i=1

∑b
j=1 xijk) =

O(b2 ·Nek−1
+Nek). In expectation Nek = Sk, where S =∑

ij θij . Thus, the generation of all layers (lines 4 to 15) have a
expected complexity of O(

∑K
k=̀+1(b2·Nek−1

+Nek+2Nek−1)) =

O(
∑K
k=̀+1 b

2 ·Sk−1) = O(b2 S
K−S`
1−S ) = O(b2 ·Ne). Finally, the

total time of the algorithm is O(`(Nv`+Ne`)+b2+b2 ·Ne) =
Õ(Ne). This complexity reduction is a result of avoiding the
Kronecker multiplication in the generation process.

D. Analysis

Again, the generation of a network can be considered as a
sampling process from a specific distribution: G ∼ PMgp (G),
where M stands for mKPGM, and PMgp (G) is defined over
the space of graphs GMgp .

With these definitions, we next state the theorems and
corollary that prove that our GP sampling algorithm samples
from the same probability distribution as the original mKPGM.

Theorem 3. Given a valid mKPGM with probability pMo (·),
the GP sampling algorithm from Alg. 2 (with probability
pMgp (·)), and a graph Gk−1, if ` < k ≤ K then ∀ u, v
pMo (Euv ∈ Gk|Gk−1) = pMgp (Euv ∈ Gk|Gk−1).

Theorem 4. Given a valid mKPGM with probability pMo (·),
the GP sampling algorithm from Alg. 2 (with probability
pMgp (·)), and a graph Gk−1, if `<k≤K then pMo (Gk|Gk−1)=
pMgp (Gk|Gk−1).

Corollary 1. Given a valid mKPGM with probability pMo (·),
the GP sampling algorithm from Alg. 2 (with probability
pMgp (·)), then ∀G pMo (G)=pMgp (G), thus PMo (G)=PMgp (G).

V. DEFICIENCIES OF EDGE BY EDGE
SAMPLING ALGORITHMS

This section proves that edge by edge generation algo-
rithms for KPGM do not sample networks from the original
KPGM probability distribution. First, we demonstrate that the
algorithms generate a different space of graphs, leading to
a different probability distribution compared to the original
algorithm. However, even if we reduce the space of graphs to
that of the original KPGM, the distributions are still different.
Again all proofs are in the appendix.

A. Edge by Edge Algorithm

Due to the excessive time to generate a network using
the original KPGM algorithm, an edge-by-edge generation
algorithm [8], which was later referred to as R-MAT [14],
was developed. This generation algorithm draws from the
normalized parameter matrix

(
Θ∑
ij Θ

)
, K times, to place an

edge (u, v) into E, where u, v=
(∑K

l=1(ul, vl − 1)bl−1)
)

+1,
ul, vl ∈ {1, · · · , b}, and ul, vl are the resulting positions of the
lth draw with respect to the matrix Θ. To generate a network,
this process is repeated Ne times (where Ne is defined by
the user), resulting in a complexity of O(K ·Ne) = Õ(Ne).

However, this new generation process can sample two or more
edges in the same position, producing multigraphs.

Under this algorithm, the probability of an edge and a graph
change with respect to the original sampling process. Let
pKe (Euv) be the probability of an edge (e refers to edge-by-
edge), then pKe (Euv)=

θu1v1
S

θu2v2
S · · · θuKvKS =πuv/S

K where
S =

∑
ij Θ, and θukvk is the sampled parameter at iteration

k. This corresponds to sample an edge from a multinomial
distribution over PK . Thus, the algorithm draws a specific
sequence of edges from a multinomial distribution to generate
a network. Let X be a random variable corresponding to the
number of edges in a network, then pKe (G|X = Ne) is the
probability of a graph G with X=Ne edges, and is equal to
the summation over all possible sequences of edges that can
lead to G. Let E =Eu1v1 , Eu2v2 ,· · ·, EuNevNe be a sequence
of X=Ne edges. The probability of this sequence is:

pKe (E) = pKe (Eu1v1 )pKe (Eu2v2 ) · · · pKe (EuNevNe ) =
1

SKNe

∏
Euv∈E

πuv

Now, a network G with X = Ne edges is the result of any of
the Ne! sequence of edges:

pKe (G|X=Ne) = pKe (E1) + pKe (E2) + · · ·+ pKe (ENe!)

=
1

SKNe

∏
Euv∈E

πuv + · · ·+
1

SKNe

∏
Euv∈E

πuv =
Ne!

SKNe

∏
Euv∈E

πuv (3)

B. Edge by Edge with Rejection Algorithm
A simple solution to avoid multigraphs is to include a rejec-

tion process for edges that were previously sampled (edge-by-
edge with rejection). By incorporating this step, the probability
of a new edge Euv (pKer(Euv), where er refers to edge-by-
edge with rejection) depends on the previously sampled edges.
Given a set of sampled edges (Eu1v1 , Eu2v2 , · · · , Euivi),
pKer(Euv) is equivalent to sampling from a multinomial dis-
tribution over all remaining ij pairs:

pKer(Euv|Eu1v1 , Eu2v2 , · · · , Euivi) =
πuv

SK −
∑i
j=1 πujvj

pKer(G|X) is not as simple as pKe (G|X) due to the depen-
dencies among the edges. This makes the probability of a
sequence of edges different based on the sampling order.
Given X =Ne, bK =Nv , and a specific sequence of edges
E = Eu1v1 , Eu2v2 , · · · , EuNevNe , the probability of this se-
quence using edge-by-edge with rejection algorithm is:

p
K
er(E)=p

K
er(Eu1v1 )p

K
er(Eu2v2 |Eu1v1 ) · · · pKer(EuNevNe

|E−EuNevNe )

=
πu1v1
SK

πu2v2
SK − πu1v1

· · ·
πuNevNe

SK −
∑Ne−1
i=1 πuivi

=

Ne∏
i=1

πuivi

SK−
∑i−1
j=1 πujvj

Under this sampling algorithm, a network G with X=Ne
edges can be the result of any Ne! permutation of the edges.
Thus, the probability of a graph G is:

pKer(G|X=Ne) = pKer(E1) + pKer(E2) + · · ·+ pKer(ENe!)

=

Ne!∑
k=1

Ne∏
ik=1

πuikvik

SK −
∑ik−1
jk=1 πujkvjk

(4)



C. Analysis

Edge-by-edge algorithms are also a sampling mechanism
from a probability distribution. The space of graphs and
probability distribution for the edge-by-edge generation al-
gorithm is GKe (X) = {G = (V,E) such that (|V| = bK)
and (|E| = X) and (∀ Euv ∈ E, 1 ≤ u, v ≤ |V|)}, and
PKe (G|X) :GKe (X)→ [0, 1]. In the case of the edge-by-edge
with rejection algorithm, GKer(X) = {G = (V,E) such that
(G ∈ GKe (X)) and (@ Euv, Eij ∈E : u= i and v= j)}, and
PKer(G|X) :GKer(X)→ [0, 1].

By definition networks generated by edge-by-edge algo-
rithms have exactly X edges. Thus, these generation algo-
rithms can not generate all networks from GKo (the space of
graphs of the original KPGM sampling process). As a conse-
quence, networks sampled using edge-by-edge algorithms are
not sampled from PKo (G).

Theorem 5. Given a valid KPGM with probability pMo (·) and
the edge-by-edge sampling algorithms with probability pKe (·)
and pKer(·), then PKer(G|X) 6=PKo (G) 6=PKe (G|X).

This theorem proves that edge-by-edge algorithms differ
from the original KPGM sampling process, because of the
differences in the space of graphs. We illustrate this idea
graphically in Figure 1 (right plot), where GKo is different
than GKe (X), and GKer(X) is a subset of GKo and GKe (X).
GKe (X) is the result of the edge-by-edge generation algo-
rithm sampling multigraphs (which do not exist in GKo and
GKer(X)). Additionally, the original algorithm can generate
networks with different X (even the empty graph belongs to
GKo ), unlike edge-by-edge algorithms.

Even if we reduce the space of graph for KPGM to the
subset GKo (X) (i.e., networks with X edges), PKo (G|X) (the
probability distribution over GKo (X)) can be different than
PKe (G|X) and PKer(G|X). First, PKo (G|X) 6= PKe (G|X) be-
cause the possibility of multigraphs makes the space of graphs
different (similar to theorem 5). Second, unless very stringent
conditions are met we also have PKo (G|X) 6=PKer(G|X), even
though the spaces of graphs are the same: GKo (X)≡GKer(X).

Let pKo (G|X=Ne) be the probability of a graph under the
original KPGM with X=Ne, then pKo (G|X=Ne) =

pKo (G)
ZNe

iff
G∈GKo (Ne), where ZNe =

∑
G∈GKo (Ne)

pKo (G). Now, we can
establish the conditions under which pKo (G1|X)=pKer(G1|X)
based on another graph G2 in the next theorem.

Theorem 6. Assume there is a graph G2 = (V2,E2) with
|E2| = X such that pKer(G2|X) = pKo (G2|X) > 0. Then let
G1 = (V1,E1) be another graph such that |V1| = |V2|
and |E1| = |E2|, with pKo (G1|X) > 0 and pKo (G1|X) 6=
pKo (G2|X). In this case, pKer(G1|X) = pKo (G1|X) only if:
pKer(G1|X)

∏
Euv∈E1∧Euv /∈E2

1−πuv
πuv

pKer(G2|X)
∏
Eij∈E2∧Eij /∈E1

1−πij
πij

= 1

If this condition does not hold, there will be a graph G1 such as
pKo (G1|X) 6=pKer(G1|X), thus PKer(G|X) 6= PKo (G|X). Next,
we define a corollary, where even for graphs with a single
edge (i.e. X = 1) this condition does not hold.

Corollary 2. Let G1 = (V1,E1) be a graph such that E1 =

{E11} (i.e., |E1|= 1) where pKo (G1) =
pKo (G∅)
ZX

π11

1−π11
> 0; and

let G2 =(V2,E2) be a graph where E2 ={E2} and pKo (G2)=
pKo (G∅)
ZX

π22

1−π22
>0 such that |V1|= |V2|, X = |E1|= |E2|, and

pKo (G1|X) 6=pKo (G2|X). Then pKer(G1|X) 6=pKo (G1|X).

A particular case where PKer(G|X) = PKo (G|X) is when
all the edges have the same probabilities (θij = θ, ∀i, j ∈
{1, 2, · · · , b}, i.e. Erdos Renyi model).

Finally, to compare PKe (G) and PKer(G) against PKo (G),
we marginalize over the number of edges: PK· (G) ∼∑
X P

K
· (G|X)PK· (X). Unfortunately, the real distributions

for PKe (X) and PKer(X) are unknown and difficult to estimate.
However, we will show empirically that even using distribu-
tions for PKe (X) and PKer(X), as suggested by [11] and [12],
the final marginalized distributions are different than that of
the original model.

VI. EXPERIMENTAL RESULTS

We use three experiments to empirically validate our the-
oretical characterization of the GP sampling algorithms.1 In
particular, we show that our implemented algorithms: (1)
sample from the original KPGM probability distribution, (2)
generate networks that have the same characteristics as those
sampled from the original Kronecker model, and (3) have a
generation time Õ(Ne).

A. Distribution over space of graphs

We compared the analytical and empirical cumulative prob-
ability distributions (CDFs) among all described methods
for a small network of size Nv = 4. Even though Nv is
small, the space of graphs GKo has |GKo | = 2N

2
v = 65, 536

networks. The analytical distributions were previously defined
in sections II-V. Here, we calculate empirical distributions
based on 5,000,000 networks, using the following parameters
Θ = [0.9 0.7; 0.5 0.1], b = 2, K = 2, and ` = 1 for mKPGM.
For the empirical distributions PK· (G|X), we fixed X = 5
because around 25% of the 5,000,000 generated networks had
this number of edges under the original KPGM algorithm.

To compare CDFs, we calculated the maximum absolute
value between two CDFs (the Kolmogorov Smirnov distance,
KS). We report the results in table I—values close to 0% imply
similar CDFs. We also apply the KS hypothesis test [15] to
determine if the differences between two CDFs are statistically
significant. Hypothesis tests that are not rejected are in bold
font in table I.

Figure 2(a) shows that the original KPGM and GP sampling
algorithms for KPGM match the analytical KPGM distribu-
tion. This is also confirmed by the low KS distances (0.03%
in both cases), and the fact that the null hypothesis is not
rejected (bold font in table I). These results confirm that
the empirical distribution of our GP algorithm matches the
analytical distribution for KPGM (PKgp(G) = PKo (G)).

1The code to replicate these experiments is available at
http://nld.cs.purdue.edu



To compare against edge-by-edge algorithms, we marginal-
ize over X , sampling PKe (X) and PKer(X), as suggested
by [11] and [12], from N(SK , SK −SK2 ) where S =

∑
ij θij

and SK2 =
∑
ij θ

2
ij . As shown in Figure 2(a), PKe (G) and

PKer(G) do not match the analytical distribution for PKo (G).
The KS evaluation produces large distances of 16.10% and
62.27%, which results in rejection of the null hypothesis.
Moreover, the CDF of PKe (G) does not sum up to 1 because
|GKe | >> |GKo | due to multigraphs. These results support
our claim that edge-by-edge algorithms do not sample the
networks from the original KPGM probability distribution.

Figure 2(b) shows the results when we compared the
distributions using a specific number of edges (PK· (G|X)).
The analytical and empirical distributions for edge-by-edge
algorithms match, obtaining a low KS distance (0.06% and
0.13% respectively), but the null hypothesis is only rejected
for PKe (G|X). Again the CDF of PKe (G|X) does not sum
up to 1. These issues related to PKe (G|X) are the result of
the multigraphs that were not considered. Aside from these
results, the empirical CDFs for PKo (G|X) and PKgp(G|X)
overlap, with a KS distance of 0.09%, which does not result
in rejection of the null hypothesis (i.e., the differences are not
statistically significant; note this KS result is not included in
the table, because both are empirical distributions). Moreover,
these distributions are different than the analytical CDFs of
PKe (G|X) and PKer(G|X), resulting in large KS distances and
the rejection of the null hypothesis (table I).

Figure 2(c) shows the empirical CDFs for the original
and GP sampling algorithms for mKPGM. Again the CDFs
overlap, with a low KS distance of 0.08%, which does not
result in rejection of the null hypothesis (KS results again are
not listed in the table because both are empirical distributions).
These findings confirm that the empirical distributions are
similar (PMo (G)=PMgp (G)).

Figure 2(d) shows the average log ratio per edge under the
KPGM likelihood for the different sampling methods. In this
experiment, we used the Θ for the GRQC dataset (Table II),
K = 11 ⇒ Nv = 177, 147 and E[Ne] = (

∑
Θ θij)

K
=

1, 398, 967. We did not compare against the original KPGM
algorithm, because of the amount of time required to generate
large networks with that approach. To calculate and compare
the log ratios we rewrite the KPGM likelihood equation:

pKo (G) = pKo (G∅)

∏
Euv∈E(1− πuv)∏
Euv /∈E(1− πuv)

where pKo (G∅) is the probability of the empty graph. We drop
this component because is the same for all algorithms. To
avoid multigraphs and make a fair comparison, we eliminated
duplicate edges and considered the average log ratio over the
generated edges. The plot confirms that networks generated by
the GP sampling algorithm have a higher average log ratio per
edge than edge-by-edge generation methods. This is evidence
that, even in large graphs, edge-by-edge algorithms generate
networks that are less likely under the KPGM.

KS dist Empirical
PKo (G) PKgp(G) PKe (G) PKer(G)

Analytical PKo (G) 0.03% 0.03% 62.27% 16.10%
PKo (G|X) PKgp(G|X) PKe (G|X) PKer(G|X)

Analytical
PKe (G|X) 69.56% 69.56% 0.06% 69.47%
PKer(G|X) 15.55% 15.54% 69.52% 0.13%

TABLE I
KS DISTANCES TO ANALYTICAL PKo (G), PKe (G|X) AND PKer(G|X).

Dataset Nv Ne Θ
Email 6,503 14,756 [.09 .17 .48 .17 .97 .07 .48 .07 .81]
GRQC 5,242 28,980 [.99 .80 .02 .80 .03 .01 .02 .01 .95]

TABLE II
LEARNED PARAMETERS FOR DATASETS

B. Network characteristics

The second experiment compared the characteristics of
the generated network for different Θ learned over two
datasets [16]. We give the Θs and characteristics of the
networks in Table II. The GRQC dataset is a single networks
that we can use to see the differences among the generation
algorithms for KPGM. The Email dataset is an illustrative
example of a graph population that we can use to compare
the generation algorithms for mKPGM (` = 5).

We generated 200 networks for each dataset, and compared
their degree and clustering coefficient CDFs. The degree of
a node di is the number of nodes in the graph connected to
node i. The clustering coefficient of a node i is: ci = 2|δi|

(di−1)di
,

where δi is the number of triangles in which the node i
participates.

Figure 3 confirms that GP sampling can replicate the charac-
teristics of the networks generated by the original KPGM and
mKPGM algorithms, replicating not only the median of the
distribution but also their variability in the case of the mKPGM
(given by the error bars of the right plots). In contrast, for
KPGM, networks generated by edge-by-edge algorithms (with
and without rejection) only match the degree distribution but
not the clustering coefficient. Even though the goal of this
work is to replicate the networks generated by the original
sampling algorithm, we can observe that original and GP
sampling methods are closer to the distributions of the real
data, which confirms the importance of sampling accurately
from the original distribution.

C. Running time

The last experiment compared the generation time in sec-
onds among all generative algorithms. We ran this experiment
on a Mac with processor 2.9 GHz Intel Core i7 and 8 GB
1600 MHz DDR3 of RAM memory, under OS X Version
10.9.2. The software utilized for the experiment was Matlab
version 7.14.0.739 (R2012a). We implemented all the methods
to reduce the runtime of the generation algorithm, even if we
had to increase memory.

The results report the average time in seconds over 100
networks using Θ=[0.9 0.7; 0.5 0.1], b=2, K={5, · · · , 20},
and ` = dK/2e (for mKPGM). Unfortunately, we could not



(a) CDFs PK· (G) (b) CDFs PK· (G|X) (c) CDFs PM· (G) (d) average log ratio per edge

Fig. 2. Cumulative distributions function over the space of graph Nv = 4 for different sampling methods. (a): Space of graph given by Nv = 4. (b): Space
of graph restricted to X = 5. (c): Space of graphs for mKPGM. (d): Average ratio per edge for large networks.

(a) GRQC degree (b) GRQC clustering (c) Email degree (d) Email clustering

Fig. 3. Degree and Clustering Coefficient for KPGM and mKPGM generative algorithms on GRQC (left) and Email (right) datasets.

generate networks for some of the larger values of K for
the original and edge-by-edge (with and without rejection)
generation algorithms because of infeasible run times.

Left plot of Figure 4 corroborates the inefficiency of the
original KPGM algorithm, which on average takes approxi-
mately 11 seconds to generate a network with 214 = 16, 384
nodes. Edge-by-edge generation algorithms are a little faster
than GP sampling when K ≤ 15 and K ≤ 18 (with and
without rejection respectively). However, their times increase
considerably for large K, because of memory issues. The
empirical results confirm the linear time complexity of GP
sampling with respect to the number of edges (Õ(Ne)), and
it is the fastest algorithm for larger K. We were able to
generate, in memory, a network with 223 = 8, 388, 608 nodes
and approximately 75, 114, 133 edges in 265 seconds.

Fig. 4. Generation time in seconds against the expected number of edges,
for KPGM (left) and mKPGM (right) generative algorithms

We give similar results for mKPGM (right plot, Figure 4).
We can observe the O(N2

v ) time complexity for the original
mKPGM algorithm. In contrast, the GP sampling algorithm is

faster than the original mKPGM and KPGM algorithms (for
this particular `), and the results confirm its linear time with
respect to the number of edges (Õ(Ne)). We were able to
generate, in memory, a network with 223 = 8, 388, 608 nodes
and approximately 75, 114, 133 edges in 87 seconds. Note that
mKPGM generation is even faster than KPGM, because its
algorithmic complexity depends on the addition of processes,
rather than the multiplication used in KPGM.

VII. CONCLUSIONS

The main contribution of this paper is a new representation
of Kronecker models, which facilitates the creation of algo-
rithms for KPGM and mKPGM that correctly sample from the
original probability distribution. Our implemented algorithms:
(1) reproduce the probability distribution over the space of
graphs intended by the original Kronecker family of models
(KS distances less than 0.1%), (2) replicate the characteristics
of the networks generated by the original algorithms, and (3)
efficiently generate networks with time complexity Õ(Ne).
Notably, we can generate a network with ∼8 million nodes
and ∼75 million edges in 87 seconds.

We also prove that previous edge-by-edge generation al-
gorithms do not generate networks from the same space of
graphs, nor do they replicate the probability distributions of
the original KPGM (KS distances greater than 15.45%).

In the future, we will apply the GP sampling ideas to de-
velop scalable sampling methods for other statistical network
models that sample edges from a probability matrix. We will
also parallelize the algorithm by generating the set of edges
for each unique probability value separately.



APPENDIX

For all the following demonstrations, it is assumed that K > 0
and 0 ≤ θij ≤ 1, ∀ i, j ∈ {1, · · · , b}

Proof Theorem 1: Let π′uv = θγ1111 θγ1212 · · · θ
γbb
bb and T =

K!
γ11!γ12!···γbb!

be the new representation of the probability of an
edge Euv , and the number of edges with unique probability π′uv
respectively, then

pKgp(Euv)=

T∑
k=0

P (Euv|X=k)P (X=k) (5)

where X ∼ Bin(T, π′uv) and P (Euv|X=k) is defined by

P (Euv |X=k)=1− P (Euv |X=k)=1−
k∏
i=1

(
1−

1

T −
∑i−1
j=1 1

)

=1−
k∏
i=1

(
1−

1

T − (i− 1)

)
=1−

k∏
i=1

(
T − i

T − i+ 1

)
=1−

T − k
T

=
k

T

Reemploying P (Euv|X=k) in equation 5

pKgp(Euv)=
T∑
k=0

k

T
Bin(X=k;T, π′uv)=

1

T
E[X]=

1

T
π′uvT =pKo (Euv)

Proof Theorem 2: While the sampling of edges for an unique
probability value are dependent, the edges between different unique
probability values are independent of each other. Let Ek be the set
of edges with unique probability πk and |Ek| = xk, then

pKgp(G)=

|U|∏
k=1

pKgp(Ek)=

|U|∏
k=1

Tk∑
i=1

pKgp(Ek|Y = i)P (Y = i)

=

|U|∏
k=1

pKgp(Ek|Y = xk)P (Y = xk)

where Y ∼ Bin(π′k, Tk), pKgp(Ek|Y = i) = 0 if i 6= xk and
pKgp(Ek|Y = xk) is given by the probability over the xk! possible
sequences of edges. Let Eki the ki be the possible sequence of edges
of the set Ek. Edges previously sampled are rejected and resampled,
and all edges have the same probability to be sampled, then p(Eki) =
1
Tk

1
Tk−1

· · · 1
Tk−xk+1

.

So pKgp(Ek|Y = xk) = pKgp(Ek|xk) is given by

pKgp(Ek|xk)=

xk!∑
i=1

p(Eki )=xk!
1

Tk

1

Tk−1
···

1

Tk−xk + 1
=
xk!(Tk−xk)!

Tk!

Joining pKgp(Ek|Y = xk) = pKgp(Ek|xk) with P (Y = xk)

pKgp(Ek|Y =xk)P (Y =xk)=
xk!(Tk − xk)!

Tk!

(Tk
xk

)
π
′xk
k (1− π′k)Tk−xk

=
1(Tk
xk

)(Tk
xk

)
π
′xk
k (1−π′k)Tk−xk = π

′xk
k (1−π′k)Tk−xk

Reemploying in pKgp(G)

pKgp(G)=

|U|∏
k=1

pKgp(Ek) =

|U|∏
k=1

π
′xk
k (1− π′k)Tk−xk

=
∏

Euv∈E
pKo (Euv)

∏
Euv /∈E

(1− pKo (Euv))=pKo (G)

Given that the space of graphs are the same (GKo =GKgp), therefore
PKo (G)=PKgp(G).

Proof Theorem 3: In mKPGM, let Euv be an edge of the layer
Gk, if ` < k ≤ K, then

pMo (Euv ∈ Gk|Gk−1)

= pMo (Euv ∈ Gk|EF [k]
uv
∈ Gi−1) + pMo (Euv ∈ Gi|EF [k]

uv
/∈ Gi−1)

=θ
F

[k]
uv

+ 0=θij

where F [k]
uv = i, j corresponds to the father/parent indexes of Euv in

layer k. Similarly, in the GP sampling process, let Euv be an edge
of the layer Gk, if ` < k ≤ K, then

pMgp (Euv ∈ Gk|Gk−1)

=pMgp (Euv ∈ Gk|EF [k]
uv
∈ Gk−1) + pMgp (Euv ∈ Gk|EF [k]

uv
/∈ Gk−1)

=pMgp (Euv ∈ Gk|EF [k]
uv
∈ Gk−1)=

Nek−1∑
x=0

x

Nek−1

Bin(x;Nek−1 , θij)

(6)

=
1

Nek−1

E[X]=
θijNek−1

Nek−1

=θij=pMo (Euv ∈ Gk|Gk−1)

where equality 6 is developed in the proof of theorem 1.
Proof Theorem 4: In the GP sampling process, let Gk be a layer,

if ` < k ≤ K, then pMgp (Gk|Gk−1) =
∏b
i=1

∏b
j=1 p

M
gp (Eijk |Gk−1),

where pMgp (Eijk |Gk−1) is the set of edges with unique probability
θij and |Eijk | = xijk . Rewriting pMgp (Eijk |Gk−1) we obtain

pMgp (Eijk |Gk−1)= pMgp (Eijk |Y = xijk , Gk−1)P (Y = xijk |Gk−1)

as explained in theorem 2, Y ∼ Bin(Nek−1 , θij), and
pMgp (Eijk |Y = xijk , Gk−1) is given by the probability over the xijk !
possible sequences of edges. Similar to theorem 2, let Eijkm be the
km possible sequence of edges of the set Eijk , then p(Eijkm ) =

1
Nek−1

1
Nek−1

· · · 1
Nek−1

−xijk+1
.

So pMgp (Eijkm |Y = xijk , Gk−1) is given by

pMgp (Eijkm |Y = xijk , Gk−1)=

xijk
!∑

i=1

p(Eijkm )

= xijk !
1

Nek−1

1

Nek−1 − 1
· · · 1

Nek−1 − xijk + 1
=

1(
Nek−1
xijk

)
Joining pMgp (Eijk |Y = xijk ) with P (Y = xijk )

pMgp (Eijk |Y =xijk )P (Y =xijk )=

(Nek−1
xijk

)
(Nek−1
xijk

) θxijkij (1−θij)
Nek−1−xijk

= θ
xijk
ij (1− θij)

Nek−1
−xijk

Reemploying in pMgp (Gk|Gk−1)

pMgp (Gk|Gk−1)=

b∏
i,j=1

pMgp (Eijk |Gk−1)=

b∏
i,j=1

θ
xijk
ij (1− θij)

Nek−1
−xijk

=
∏

Euv∈Ek

pMo (Euv∈Gk|Gk−1)
∏

Euv/∈Ek

(1−pMo (Euv∈Gk|Gk−1))=pMo (Gk|Gk−1)

Proof Corollary 1: In the original mKPGM sampling process,
let G be any network belonging to GMo , and GK−1 be the set of all
possible graph that can be generated of size bK−1, then



pMo (GK)=
∑

Gi1∈GK−1

pMo (GK |Gi1 )pMo (Gi1 ) =
∑

Gi1∈GK−1

pMgp (GK |Gi1 )pMo (Gi1 )

So, pMo (GK) is rewritten as the summation of
pMo (GK |Gi1)pMo (Gi1). Given that pMo (GK |Gi1) = pMgp (GK |Gi1)
(theorem 4), then we have to demonstrate that pMo (Gi1) = pMgp (Gi1).
Applying the same process multiple times

pMo (GK)=
∑

Gi1∈GK−1

pMgp (GK |Gi1 )pMo (Gi1 )

=
∑

Gi1∈GK−1

pMgp (GK |Gi1 )

 ∑
Gi2∈GK−2

pMo (Gi1 |Gi2 )pMo (Gi2 )



=
∑

Gi1∈GK−1

pMgp (GK |Gi1 )

· · ·
 ∑
G`∈G`

pMgp (G`+1|G`)pMo (G`)


Considering that pMo (G`) and pMgp (G`) are generated by KPGM,
then by Theorem 2 pMo (G`) = pMgp (G`), we obtain

pMo (GK)=
∑

Gi1∈GK−1

pMgp (GK |Gi1 )

· · ·
 ∑
G`∈G`

pMgp (G`+1|G`)pMo (G`)


=
∑

Gi1∈GK−1

pMgp (GK |Gi1 )

· · ·
 ∑
G`∈G`

pMgp (G`+1|G`)pMgp (G`)

=pMgp (GK)

Proof Theorem 5: ∀ G = (V,E) such that G ∈ GKo , thus
pKo (G) > 0, because every edge has positive probability (0 <
pKo (Euv)<1 ∀ Euv).

Considering that ∃ G such that
(

(G ∈ GKo ) and (G /∈ GKe (X))

and (G /∈ GKer(X))
)

then
(

(pKo (G)> 0) and (pKe (G|X) = 0) and

(pKe (G|X)=0)
)

therefore PKer(G|X) 6= PKo (G) 6= PKe (G|X).

Proof Theorem 6: Assume that pKer(G1|X) = pKo (G1|X),
rewriting pKo (G1|X) based on pKo (G2|X) using the empty graph
G∅ = (V∅,E∅) (|V∅| = |V1| and |E∅| = 0), then

p
K
er(G1|X) = p

K
o (G1|X)⇒ 1 =

pKer(G1|X)

pKo (G∅)
ZX

∏
Euv∈E1

πuv

1− πuv

⇒1 =
pKer(G1|X)

pKo (G∅)
ZX

∏
Euv∈E1
∧Euv∈E2

πuv

1− πuv

·
1∏

Euv∈E1
∧Euv /∈E2

πuv

1− πuv

∏
Euv∈E2
∧Euv /∈E1

πuv(1− πuv)

πuv(1− πuv)

⇒1 =
pKer(G1|X)

pKo (G∅)
ZX

∏
Euv∈E2

πuv

1− πuv

·
1 ∏

Euv∈E1
∧Euv /∈E2

πuv

1− πuv

∏
Euv∈E2
∧Euv /∈E1

1− πuv
πuv


⇒1 =

pKer(G1|X)

pKo (G2|X)
∏

Euv∈E1∧Euv /∈E2

πuv

1− πuv

∏
Eij∈E2∧Eij /∈E1

1− πij
πij

⇒1 =

pKer(G1|X)
∏

Euv∈E1∧Euv /∈E2

1− πuv
πuv

pKer(G2|X)
∏

Eij∈E2∧Eij /∈E1

1− πij
πij

(7)

Thus, if equality 7 does not hold, then pKer(G1|X) 6= pKo (G1|X).

Proof Corollary 2: Assume pKer(G2|X)=pKo (G2|X), otherwise
G2 shows that pKer 6=pKo , and assume equality 7 holds. Then

pKer(G1|X)
∏
Euv∈E1∧Euv /∈E2

1−πuv
πuv

pKer(G2|X)
∏
Eij∈E2∧Eij /∈E1

1−πij
πij

= 1⇒
pKer(G1|1) 1−π11

π11

pKer(G2|1) 1−π22
π22

= 1

⇒
π11
SK

1−π11
π11

π22
SK

1−π22
π22

= 1⇒
1− π11

1− π22
= 1⇒ π11 = π22

However, by definition pKo (G1|X) 6= pKo (G2|X), which determines

pKo (G1|X) 6= pKo (G2|X)⇒
pKo (G∅)

ZX

π11

1− π11
6=
pKo (G∅)

ZX

π22

1− π22

⇒
π11

1− π11
6=

π22

1− π22
⇒ π11 6= π22

However π11 6=π22 and the equality does not hold. Thus by con-
tradiction pKer(G1|X) 6= pKo (G1|X), which shows that PKer(G|X) 6=
PKo (G|X).
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