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The growth of the internet has created large scale col-
lections of relational data. In these cases, datasets contain
relationships between the items or individuals that are be-
ing modeled – e.g, hyperlinks connect webpages on the in-
ternet, while friendships (Facebook), followers (Twitter) or
messages (Email) form between individuals in social net-
works. Individuals connected through these relationships
exhibit relational correlation, or a statistical dependence of
their attributes [2]. Modeling these relationships can give
better predictions about users, or a better understanding of
the underlying social processes.

The field of Statistical Relational Learning (SRL) utilizes
these relational connections to collectively predict the un-
known labels in the network, with resulting methods able to
largely outperform traditional independent learning meth-
ods (for a summary of SRL see [3]). The developed methods
can undertake tasks such as identifying fraudulent securi-
ties traders or inferring gene interactions, as well as predict
user traits or personalize content. Similarly, Social Network
Mining (SNM) mines information of the individuals given
their attributes and relational structure, focusing on tasks
such as predicting future links or on identifying communi-
ties within a network (for an introduction see [1]). In these
domains, large scale data is necessary to drive further re-
search towards developing accurate and scalable algorithms
that continuously push the state of the art forwards.

However, attributed data in relational domains is partic-
ularly sensitive in comparison to other domains. Datasets
such as the UCI collection1 exist for moderate testing and
comparison of traditional machine learning algorithms, while
large scale unattributed network repositories exist such as
SNAP2 or the UF Sparse Matrix Collection3. In contrast,
attributed relational datasets are typically the product of
collections of social interactions, such as Facebook, Twitter,
LinkedIn, LivingSocial, Email, and more. A large collec-

1archive.ics.uci.edu/ml/
2snap.stanford.edu
3www.cise.ufl.edu/research/sparse/matrices/index.html
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tion of labels for websites exists through the Open Directory
Project4, but requires crawling millions of pages. As the
pages are under copyright by their original publishers, these
crawls cannot be released. Thus, attributed networks are
closely guarded for both copyright, proprietary and privacy
reasons. As a result, although public attributed datasets do
exist (e.g., IMDB5 or SNAP’s Amazon copurchases), they
are rare, small and/or can not be easily distributed.

For many tasks, the exact proprietary information is not
needed by the researchers; rather, networks with similar
network structure and attribute correlations that capture
salient characteristics of the networks would suffice. Ad-
vances in understanding and learning on the similar datasets
can then translate to successes on the private data. For
example, a network with similar (e.g.) clustering, degree
distributions and attribute correlations with a billion ver-
tices could allow for demonstrations of algorithm scalability,
with the resulting methods translated and implemented on
datasets such as Facebook or Twitter. In this case, the ac-
tual Facebook or Twitter network is not needed, simply a
reasonable substitute in terms of size and structure.

Recent advances in generative network models [6, 7] al-
low for scalable learning and sampling graph structure. By
making reasonable restrictions on the search space, these
methods can sample from the space of edges in subquadratic
time (in terms of the number of vertices). This allows them
to scale to networks with billions of vertices and accurately
capture the underlying network structure. However, the as-
sumptions they make are carefully crafted to allow for scal-
able learning and sampling of real world network structure,
which can not incorporate vertex attribute information.

Our recently proposed Attributed Graph Models (AGM) is
the first step to solving this problem [8]. AGM extends any
existing scalable generative graph models to incorporate at-
tributes on the vertices. In doing so, AGM provably samples
from the joint distribution of attributes and edges, with both
the sample and model then available for other researchers to
use. AGM maintains the structural characteristics provided
by the graph models and incorporates the attribute depen-
dencies, while remaining subquadratic in runtime.

In particular, AGM generalizes and exploits a common
key structural assumption of generative network models.
Namely, generative network models incrementally sample an
observed edge from all possible edges and insert it into the
generated network. This process repeats until enough edges
are inserted into the network. AGM augments this pro-
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Figure 1: Degree distributions and Clustering Co-
efficient distributions for TCL, AGM-TCL, KPGM
and AGM-KPGM. The AGM models capture the
generative graph model’s structure for both.

Model
Facebook Correlations

R P RP

Original 0.108 .211 0.106

MAG 0.584 0.436 0.002

TCL 0.001 0.001 0.001
AGM-TCL 0.128 0.219 0.093

KPGM3x3 0.001 -0.001 0.001
AGM-KPGM3x3 0.132 0.221 0.092

Table 1: Correlations for attributes in each dataset.
Bold indicates within .05 of the original network.

cess by selectively inserting some edges, and omitting oth-
ers. The edges chosen for insertion reflect the conditional
distribution of the edges given the attributes, modeling the
dependencies between the edges and attributes.

The AGM process begins by learning independent distri-
butions for both the attributes (using statistical models [5])
and edges (using a generative network model), then, sam-
ples a new set of attributes for the vertices. AGM uses
the learned generative graph model to sample a network in-
dependent of the attributes, and measures the correlations
observed in comparison to the observed attribute edge de-
pendencies in the true network. AGM then uses the dif-
ferences between these correlations to construct acceptance
probabilities. Lastly, AGM discards the network sample and
constructs a new network by repeatedly sampling from the
generative graph model, but selectively rejecting proposed
edges based on the endpoint attributes using the learned
acceptance probabilities.

As a demonstration, we apply AGM on a Facebook net-
work with 444,817 vertices and 1,016,621 edges. We test
AGM combined with two generative graph models: the first
is KPGM with a 3x3 initiator matrix, the second is the Tran-
sitive Chung Lu (TCL) model (a variant of CL). We choose
to have AGM model the joint distribution of two attributes:
Political Views and Religious Views. The structural charac-
teristics (degree and clustering) of the generated networks
are given in Figure 1: we see that AGM-TCL is structurally
identical to TCL, while AGM-KPGM is structurally iden-
tical to KPGM. However, Table 1 shows the correlations
produced by the AGM models for the Politics and Religion
features match the correlations of the original data, while
the baseline generative network models (KPGM and TCL)
do not match the correlation of the original network. AGM
models not only the individual correlation of Religion and
Politics, but also the cross correlation (the RP column).
We augment the Multiplicative Attributed Graph (MAG)
[4] model for comparison; however, this model is intended
for inferring latent attribute characteristics and cannot ef-
fectively model the observed correlations.

The abilities of AGM are further highlighted in the ex-
ample. First, approximately 6,000 people have labels within
the Facebook network, yet AGM is able to sample a network
with nearly 500,000 vertices and over 1,000,000 edges. This
larger attributed network allows for more extensive testing of
relational algorithms on scalable datasets. Second, the ran-
domly generated network contains the same structural and
attribute characteristics as the original Facebook network,
but is distinct. To date, we have used AGM to release syn-
thetic representations of five original attributed networks.
We are actively in the process of releasing AGM code, so
others can utilize it to release synthetic networks with sim-
ilar characteristics as proprietary networks6.

The released AGM datasets represent a new direction to-
wards testing and reproducibility efforts in SRL and SNM
research. However, there is still considerable work to un-
dertake. The current AGM method uses simple discrete
multinomials to represent the acceptance probabilities. Fu-
ture efforts should focus on more advanced modeling of the
distribution of attributes given edges, with considerable fo-
cus on accurate statistical models of the edge relationship
structure. Further, theoretically the accept-reject processes
hold for continuous variables, but we have not yet investi-
gated this domain. Lastly, high dimensional attribute vec-
tors could impact the acceptance rates of the AGM process.
Future efforts should focus on overcoming this possible limi-
tation through methods such as annealing. By creating gen-
erative models of attributed network data, we avoid the lim-
itations of proprietary relational data to advance SRL and
SNM and allow for further study in large scale domains.
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