
Fast Generation of Large Scale Social Networks
While Incorporating Transitive Closures

Joseph J. Pfeiffer III1, Timothy La Fond1, Sebastian Moreno1, Jennifer Neville1,2
Departments of Computer Science1 and Statistics2, Purdue University, West Lafayette, IN

{jpfeiffer, tlafond, smorenoa, neville}@purdue.edu

Abstract—A key challenge in the social network community
is the problem of network generation—that is, how can we
create synthetic networks that match characteristics traditionally
found in most real world networks? Important characteristics
that are present in social networks include a power law degree
distribution, small diameter, and large amounts of clustering.
However, most current network generators, such as the Chung
Lu and Kronecker models, largely ignore the clustering present
in a graph and focus on preserving other network statistics, such
as the power law distribution. Models such as the exponential
random graph model have a transitivity parameter that can
capture clustering, but they are computationally difficult to learn,
making scaling to large real world networks intractable. In this
work, we propose an extension to the Chung Lu random graph
model, the Transitive Chung Lu (TCL) model, which incorporates
the notion transitive edges. Specifically, it combines the standard
Chung Lu model with edges that are formed through transitive
closure (e.g., by connecting a ‘friend of a friend’). We prove TCL’s
expected degree distribution is equal to the degree distribution
of the original input graph, while still providing the ability to
capture the clustering in the network. The single parameter
required by our model can be learned in seconds on graphs
with millions of edges; networks can be generated in time that is
linear in the number of edges. We demonstrate the performance
of TCL on four real-world social networks, including an email
dataset with hundreds of thousands of nodes and millions of
edges, showing TCL generates graphs that match the degree
distribution, clustering coefficients and hop plots of the original
networks.

I. INTRODUCTION

Due to the prevalence of ‘small world’, ‘power law’ graphs
such as Facebook and the World Wide Web [1], models that
attempt to generate statistics frequently observed in these
networks have become a much-discussed topic in the field
([2], [3], [4], [5], [6], [7]). The defining characteristics of many
real-world networks include a power law degree distribution,
high clustering, and a small diameter.

The first random graph algorithm, the Erdos-Renyi
model[8], independently samples a set of random connections
between nodes in the graph. However, the ER model produces
a Binomial degree distribution, not power law, and generally
lacks clustering when generating sparse networks. As a result,
Exponential Random Graph Models (ERGMs [3]) were de-
veloped as an extension of the Erdos-Renyi model, in order
to represent additional statistics of the graph as parameters.
The typical ERGM approach is to model the network with
a Markov independence assumption throughout the graph—
edges are only dependent on other edges that share the same
node. Using this assumption, ERGMs define an exponential

family of models using various Markov statistics of the graph
then algorithms to learn the model parameters maximize the
likelihood of the input graph. The algorithms for learning
and generating ERGMs are resource intensive, making them
inpractical for application involving networks larger than a few
thousand nodes.

More recent efforts on developing statistical models of
networks make scalability an explicit goal when constructing
models and sampling algorithms. Notable examples include
the Chung-Lu Graph Model (CL) [4] and the Kronecker
Product Graph Model (KPGM) [2]. CL is also an extension
of the Erdos-Renyi model, but rather than creating a summary
statistic based on the degrees, it generates a new graph
such that the expected degree distribution matches the given
distribution exactly. In [5], the authors modify the initial CL
approach to allow generation in time linear to the number of
edges, making generation of large scale networks tractable.

In contrast to both ERGM and CL, KPGM learns a small
matrix of parameters (i.e., 2x2) and samples edges according
to the Kronecker product of the matrix with itself log n times.
This method has shown success in generating networks with
a range of global properties including a power law degree
distribution and path length distributions. For large graphs, the
KPGM algorithm can learn the parameters defined by the 2x2
matrix in a few hours and once the parameters of the model
are learned, large (new) graphs can be sampled in minutes [2].

The CL and KPGM algorithms offer scalable algorithms for
learning and generating graphs with hundreds of thousands
of nodes and millions of edges. However, in order to achieve
scalability, a power law degree distribution and small diameter,
both models have largely ignored the clustering in the network.
This is not an insignificant limitation, as the seminal work
of Wattz and Strogatz [1] show a small world network is in
part defined by the fact that it exhibits a significant amount of
clustering (greater than would be expected by random chance).

The term clustering itself can have different interpretations.
Loosely, it means how connected ‘grouped’ sets of nodes in the
graph are. Wattz and Strogatz [1] define the global clustering
coefficient as the ratio between the number of triangles to the
possible number of triangles given the current wedges (paths
of length two) in the graph. Similarly, the local clustering
coefficient is the ratio of the number of triangles incident
to a node compared to the number of wedges centered on a
that node—a distribution of large local clustering coefficients
implies a large global clustering coefficient. More recent

work has focused on the notion of conductance communities,
defining clustering in terms of how likely a random walk on
a network is to leave or enter a set of nodes. Gleich and
Seshadhri [9] recently proved that a large global clustering
coefficient coupled with a heavy tailed degree distribution
implies the existence of communities with good conductance
scores; thus, a method which accurately generates the distri-
bution of local clustering coefficients and models the degree
distribution implicitly prdoduces networks with communities
having good conductance scores.

In order to generate sparse networks which accurately
capture the degree distribution, small diameter, and the dis-
tribution of local clustering coefficients, we propose to extend
the CL algorithm in multiple ways. The first portion of this
paper will show the naive fast generation algorithm for the
CL model is biased, and we outline a correction to this
problem. Next, we introduce a generalization to the CL model
known as the Transitive Chung Lu (TCL). To do this, we
observe the CL algorithm corresponds to a ‘random surfer’
style model, similar to the PageRank random walk algorithm
[10]. However, while PageRank models the probability of
following an edge versus randomly surfing, the CL generation
algorithm always chooses the random surfer—thus it has no
affinity for connecting nodes along transitive edges. Based on
this key insight, our TCL model extends the CL algorithm
by sometimes choosing to follow transitive paths and form an
edge to close a triangle rather than transitioning to a random
node. The probability of randomly surfing versus closing a
triangle is a single parameter in our model which we can learn
in seconds from an observed graph. The contributions of our
work can be summarized as follows:

• Introduction of a ‘transitive closure’ parameter to the CL
model.

• A correction to the ‘edge collision’ problem that occurs
in the naive fast CL generation algorithm.

• Analysis showing TCL has an approximate expected
degree distribution equal to the original input network’s
degree distribution.

• A learning algorithm for TCL that runs in seconds for
graphs with millions of edges.

• A TCL generation algorithm that runs on the same order
as the fast CL algorithm, and faster than the KPGM
sampling algorithm.

• Empirical demonstration that the graphs generated by
TCL match the degree and clustering coefficient distri-
butions of the input graph more accurately than CL or
KPGM.

In section II we discuss in more depth the ERGM, KPGM
and CL models, while in section III we outline the basic
notations used in this paper, as well as the CL model. Next,
we show the fast method used for generating graphs in section
IV, and our correction to it. In section V we introduce our
modification to the CL model, proving the expected degree
distribution and demonstrating how to learn the transitive
probability, as well as analying the runtimes of our fast

CL correction and TCL. We learn parameters for real world
graphs and generate synthetic networks closely resembling
the original graphs in section VI, ending in section VII with
conclusions and future directions.

II. RELATED WORK

Recently a great deal of work has focused on develop-
ing generative models for small world and scale-free graphs
(e.g., [11], [1], [6], [12], [3], [2], [4]). As an example, the
Chung Lu algorithm is able to generate a network with a
provable expected degree distribution equal to the degree
distribution of the original graph. The CL algorithm, like
many, attempts to define a process which matches a subset
of features observed in a network.

The importance of the clustering coefficient has been
demonstrated by Watts and Strogatz [1]. In particular, they
show that small world networks (including social networks)
are characterized by a short path length and large clustering
coefficient. One recent algorithm by Seshadri et al [7] matches
these statistics by putting together nodes with similar degrees
and generating Erdos-Renyi graphs for each group. The groups
are then tied together. However, this algorithm has two param-
eters that must be set manually, giving no option for learning
individual models for individual networks.

One method that models clustering and learns the associated
parameters is the Exponential Random Graph Model (ERGM;
[3]). ERGMs define a probability distribution over the set
of possible graphs with a log-linear model that uses feature
counts of local graph properties as summary statistics on a
network. However, these models are hard to train as each
update of the Fisher scoring function takes O(n2). With real-
world networks numbering in the hundreds of thousands or
millions of nodes, ERGMs quickly become impossible to fit.

Another method is the Kronecker product graph model
(KPGM; [2]), a scalable algorithm for learning models of
large-scale networks that empirically preserves a wide range of
global properties of interest, such as degree distributions and
path-length distributions. Due to these desirable characteris-
tics, the KPGM is considered a state-of-the art algorithm for
generation of large networks. As a result, it was selected as a
generation algorithm for the Graph 500 Supercomputer Bench-
mark [5]. The KPGM starts with a initial square matrix Θ1 of
size b× b, where each cell value is a probability. To generate
a graph, the algorithm uses k Kronecker multiplications to
grow until a determined size (obtaining Θk with bk = N rows
and columns). Each edge is then independently sampled using
a Bernoulli distribution with parameter Θk(i, j). A rough
implementation of this algorithm runs in time O(N2), but
improved algorithms can generate a network in O(M logN),
where M is the number of edges in the network [2]. According
to [2], the learning time is linear in the number of edges.

III. NOTATION AND CHUNG-LU MODELS

Let G = 〈V,E〉 represent a graph, where V is a set of N
vertices, and E = V × V is a set of M edges between the
vertices. Let A represent the adjacency matrix for G where:

Aij =

{
1 (vi, vj) ∈ E
0 otherwise

(1)

Next, let D be a diagonal matrix such that:

Dij =

{∑
k Aik if i = j

0 otherwise
(2)

The diagonal of matrix D contains the degree of each node.
For ease of notation, we will use Di = Dii to refer to the
observed degree of node vi in a given network. We then
use D̃X

i to represent the random variable corresponding to
the degree of node vi in graphs drawn from the distribution
represented by model X , where X will refer to various models
that we discuss throughout the paper.

We define a transition probability matrix P that represents
the likelihood that a random walk originating at vi on G will
transition to a node vj along edge eij as:

Pij =
Aij

Di
(3)

Note that while the transition matrix in this case is defined in
terms of A, in general that need not be the case.

The Chung Lu algorithm generates a graph by indepen-
dently considering each pair vi, vj , sampling the edge eij with
probability DiDj

2M , under the assumption that ∀k Dk <
√
M .

Let D̃CL
i be the r.v. for the degree of node vi in a graph

sampled from the Chung Lu model. The expected degree for
any node vi is the degree of the node in the original input
graph G [4]:

E
[
D̃CL

i

]
=
∑
j

DiDj

2M
= Di

∑
j

Dj

2M
= Di

In [5], the authors describe a fast Chung Lu (FCL) sampling
algorithm which runs in O(M). The FCL algorithm defines
the target sampling distribution of nodes as π(i) = Di

2M . The
graph is constructed by sampling two nodes vi, vj according to
π, and then an edge is created between the sampled nodes and
added to the sampled graph: E = E∪eij . Since the algorithm
draws from π twice, the expected degree D̃FCL

i for node vi
in the sampled graph is:

E
[
D̃FCL

i

]
= M · [π(i) + π(i)] = M · 2 Di

2M
= Di

Note however, that the FCL algorithm samples the nodes with
replacement. Specifically, the implementation creates a vector
of size 2M , which contains Di replicates of each node vi. To
generate the graph, the algorithm samples a node vi uniformly
at random from the vector—this can be done in O(1). Given
a first node vi, the algorithm then draws another vertex vj
independently from the vector (i.e., with replacement). This
sampling method can alternatively be viewed as generating
edges via a random walk in the transition matrix PFCL, where

the probability of transitioning from one node to another is
always distributed according to π.

Definition 1. Let PFCL be a transition probability matrix
such that:

PFCL
jk = π(k)

The fast Chung Lu sampling algorithm generates edges ac-
cording to a random walk of length M in PFCL. This stems
from the fact that regardless of which vj is drawn first, the
second node vk is sampled directly from π.

PFCL differs from P in the sense that it is completely
connected and the next step of a random walk does not depend
on the properties of the current node.

However, we note that since the algorithm samples with
replacement, the algorithm must handle collisions where the
same edge is sampled twice. We discuss this next.

IV. FAST CHUNG-LU BIAS ADJUSTMENTS

The fast Chung-Lu method, as described in previous work
[5], has two straightforward implementations that can lead
to bias in the generated networks. In the first, the algorithm
attempts exactly M insertions, ignoring collisions completely.
In such a scenario, the probability of an edge existing between
nodes vi and vj is 1− [1− 2π(i)π(j)]

M . This is because the
edge has M opportunities to be sampled, and it can also be
generated by sampling the nodes is either order.

Since M is a positive integer and 2π(i)π(j) ≤ 1, the
Bernoulli Inequality [14] can be used to show that the edge
probabilities in FCL are less than those of the original CL
model:

1− [1− 2π(i)π(j)]
M ≤1− [1− 2Mπ(i)π(j)]

=
DiDj

2M

(4)

Since the edge probabilities do not exist with probability
DiDj

2M , but with lower probability—they have a downward bias.
Consequently, the expected degrees will also be biased (as they
are the sum of the edge random likelihoods).

A second (and the presumed implementation used in [5])
attempts to avoid this bias by inserting precisely M edges into
the network using a form of rejection sampling. Specifically,
in this approach if an edge is sampled for a second time, it
is rejected and another pair of nodes is drawn until exactly
M unique edges are added to the network. Such a method
clearly increases the exponent on the left side of equation
4, and thus the underestimated probabilities may no longer
occur. However, while this implementation avoids the clear
bias of the first (naive) method, two problems remain. We show
below that show that the rejection sampling approach leads
to a degree bias, and outline an alternative algorithm which
corrects the bias. Next, we show that the FCL algorithm, even
with a correction to the degree bias, does not match the edge
probabilities of the original Chung Lu algorithm in practice—
it only approximates the target edge probabilities.

A. Edge Collision Degree Bias

Consider the FCL algorithm that draws two nodes from π
and if an edge already exists between the two nodes in the
sampled graph, it rejects the pair and draws again. Notice that
this implementation of the FCL algorithm samples edges only
once (i.e., without replacement), but nodes may be sampled
multiple times (i.e., with replacement). Since, the sampled
pairs are rejected according to whether or not an edge already
exists between the nodes, the probability of collision is higher
for higher degree nodes. As a result the edges around high
degree nodes are rejected more frequently than those around
low degree nodes—which results in the high degree nodes
being undersampled.

Proposition 1. Let vi, vj be two nodes such that Di > Dj .
When the FCL algorithm rejects repeated samples of the same
edge, E[D̃FCL

i] will be underestimated to a greater extent than
E[D̃FCL

j].

Proof: Let vk be an arbitrary node that is selected by
the FCL algorithm after C samples. Consider the event which
corresponds to selecting node vi or vj as the second node:

p(eki|vk) = π(i) p(ekj |vk) = π(j)

Notice that each edge is sampled according to the target
degree of each node, i.e., π. However, the likelihood that the
selected edge is a collision depends on whether the edge had
already been selected during the last C samples. Thus the
probability that the edge is rejected is:

p(collisionki|vk) = 1− [1− π(k)π(i)]C

p(collisionkj |vk) = 1− [1− π(k)π(j)]C

Since π(i) > π(j), p(collisionki|vk) > p(collisionkj |vk).
While each node is sampled according to its target degree,
once sampled the high degree nodes have a larger chance of
being rejected based on a collision, for any arbitrary edge.
The rejections lower the effective degree of the node in the
sampled graph, i.e. E[D̃FCL

i] will be underestimated.

One simple approach to correct this problem is to sample
2M nodes independently from π. These samples can then be
paired together and the pairings checked for duplicates. Should
any pair of nodes be chosen more than once, the entire set of
nodes can be randomly permuted and rematched. This process
would continue until no duplicate pairings were found.

The general idea behind this random permutation moti-
vates our correction to the fast method. While the random
permutation of all M edges is somewhat extreme, a method
which permutes only a few edges in the graph—the ones with
collisions—is tractable. With this in mind, we describe our
straightforward solution (Algorithm 1). When the algorithm
encounters a collision, we place both vertices in a waiting
queue. Before continuing with regular insertions the algorithm
attempts to select neighbors for all nodes in the queue. Should
the new edge for a node selected from the queue also result in

0 500 1000 1500 2000 2500 3000 3500
Node Degree

10-4

10-3

10-2

10-1

100

C
C

D
F

Degree Distribution

Original
CL - Basic (Uncorrected)
CL - Basic (Corrected)

(a) Epinions

0 50 100 150 200 250 300 350 400 450
Node Degree

10-4

10-3

10-2

10-1

100

C
C

D
F

Degree Distribution

Original
CL - Basic (Uncorrected)
CL - Basic (Corrected)

(b) Facebook

Fig. 1. Comparison of Basic and Corrected CCDF on two datasets. The
original method underestimates the degree of the high degree nodes.

a collision, the chosen neighbor is also placed in the queue,
and so forth. This ensures that if a node is ‘due’ for a new edge
but has been prevented from receiving it due to a collision, the
node is ‘slightly permuted’ by exchanging places with a node
sampled later.

This shuffling ensures that M edges are placed in the graph
(to ensure the probability of edge existence is the same as the
slow Chung Lu), without affecting the degree distribution as
can happen by proposition 1.

The modification to the fast CL model is correct only when
there is independence between the edge placements and the
current graph configuration. However, this independence only
truly holds when collisions are allowed (i.e. when generating
a multigraph). In practice, edge placements are not truly
independent in the algorithm since the placement of edges that
already exist in the graph is disallowed. The modification we
have described removes the bias described in proposition 1 but
is not guaranteed to generate graphs exactly according to the
original π distribution. Our FCL graph generation algorithm
must project from a space of multigraphs down into a space of
simple graphs, and this projection is not necessarily uniform
over the space of graphs. However, our empirical results show
that for sparse graphs our correction removes the majority
of the bias due to collisions and that the bias from the
projection is negligible, meaning we can treat graphs from
the modified FCL as being drawn from the original Chung-Lu
graph distribution.

In Figure 1, we can see the effect of the correction on two
labeled datasets, Epinions and Facebook (described in section
VI). The green line corresponding to sampled degree distribu-
tion using the simple FCL sampling technique, which clearly
underestimates the high degree nodes in both instances. Our
FCL modification results in a much closer match to the original
degree distribution, particularly on the high degree nodes. By
utilizing this algorithm modification, we can generate graphs
whose degree distributions are largely unaffected by collisions
and we are able to generate graphs in O(M).

B. Fast Chung-Lu Edge Probabilities

In this section, we consider the special case of regular
graphs to show that for our ‘corrected’ FCL algorithm, the
probability of an edge existing is exactly the same for as for the
slow Chung Lu algorithm. Before doing so, we first derive the

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

Probability
0.005

0.004

0.003

0.002

0.001

0.000

E
st

im
a
te

 B
ia

s
(S

lo
w

 C
L

-
Fa

st
 C

L)

(a) Biases

10-3 10-2 10-1 100

Chung Lu Expected Proportion

10-3

10-2

10-1

100

A
ct

u
a
l
P
ro

p
o
rt

io
n

Fast CL Edge Probabilities

Perfect
Top-Original

(b) Original

10-3 10-2 10-1 100

Chung Lu Expected Proportion

10-3

10-2

10-1

100

A
ct

u
a
l
P
ro

p
o
rt

io
n

Fast CL Edge Probabilities

Perfect
Top-Random
Top-Top

(c) Adjusted

Fig. 2. In (a), we show the theoretical bias as the probability of the edge increases. In (b) and (c), we show the bias empirically, where (b) shows the true
Facebook network and (c) augmented Facebook network.

Algorithm 1 CL(π,N, |E|)
1: ECL = {}
2: initialize(queue)
3: for iterations do
4: if queue is empty then
5: vj = sample-pi(π)
6: else
7: vj =pop(queue)
8: end if
9: vi = sample-pi(π)

10: if eij 6∈ ECL then
11: ECL = ECL ∪ eij
12: else
13: push(queue, vi)
14: push(queue, vj)
15: end if
16: end for
17: return(ECL)

expected number of times a node vi will be selected to place
an edge, according to the corrected Fast Chung Lu algorithm
(cFCL).

Proposition 2. Let vi be a node in a regular graph, such
that ∀i, j Di = Dj . We refer to the sampled degree of vi in
the corrected FCL method as D̃cFCL

i . After R sampled edges
from π, where 0 ≤ R ≤ N2 and 0 ≤ D̃cFCL

i ≤ N :

E
[
D̃cFCL

i |R
]

=
2R

N

Proof: Note that the limit on R ensures that the number
of sampled edges is possible to fit in the network of size N .
Since ∀i, j Di = Dj , then ∀i, j E

[
D̃cFCL

i

]
= E

[
D̃cFCL

j

]
.

Additionally, the sum of degrees must always equal 2 · R,
implying the expectation of the sum of degrees is 2 ·R.

E

[∑
vi

D̃cFCL
i

∣∣∣∣∣R
]

= 2R∑
vi

E
[
D̃cFCL

i |R
]

= 2R

N · E
[
D̃cFCL|R

]
= 2R

E
[
D̃cFCL|R

]
=

2R

N

(5)

Using this, we can show that in a regular graph the proba-
bility of sampling an edge in the cFCL algorithm is the same
as that of the slow CL algorithm.

Proposition 3. Let vi, vj be nodes in a regular graph, such
that ∀i, j Di = Dj . Then the probability that edge eij is
sampled in the cFCL is the same as the probability eij is
sampled in the slow CL algorithm.

Proof: The cFCL algorithm selects every node at random
with replacement. Let D̃cFCL

j refer to the sampled degree of
node vj . Since the graph is regular, each node is selected with
equal probability and all D̃cFCL

j are identically distributed
(denoted D̃cFCL where necessary). Let PcFCL(eij |¬eik) refer
to the transition probability from vi to vj when eik has already
been placed (removing it from consideration for future place-
ment). The edge placement probability PcFCL(eij |D̃cFCL

j =
d) of an edge being sampled between vi and vj when vi has
a current sampled degree of d is:

P (eij |D̃cFCL
j = d)

= PCL(eij) +
∑

vk∈V,k 6=j

PCL(eij |¬eik)PCL(eik) + . . .

=
Dj

2M
+

∑
vk∈V,k 6=j

Dk

2M −Dk

Dj

2M
+ . . .

=
Dj

2M
+
Dj

2M

∑
vk∈V,k 6=j

Dk

2M −Dk
+ . . .

(6)

When the graph is regular, Dk = D ∀vk, meaning that the de-
nominator is the same for all vk. Furthermore, this implies the
numerator sum equals the denominator. Simplifying further:

P (eij |D̃cFCL
j = d) =

Dj

2M
+
Dj

2M

2M −D
2M −D

+ . . .

= 2
Di

2M
+ ...

(7)

More precisely, for d ≤ N the probability of vj being drawn
in the d position when all nodes are equally probable is D

2M
(a standard combinatorial result). Thus, after d insertions for
vi, the probability that eij has been placed is therefore d Dj

2M
for d ≤ N . The probability of edge eij being placed is
the marginalization over the degree variable D̃cFCL

i after M
draws from π. This can be computed as:

P (eij) =

n∑
d=0

P (eij |D̃cFCL
i = d,M)P (D̃cFCL

i = d|M)

=

n∑
d=0

Dj

2M
· d · P (D̃cFCL

i = d|M)

=
Dj

2M

n∑
d=0

P (D̃cFCL
i = d|M) · d

(8)

The summation is simply the expected value of D̃cFCL
j for

a given number of draws M . Since every node has degree D,
the total number of edges is D·N

2 . Using proposition 2:

P (eji) =
Dj

2M

n∑
d=0

P (D̃cFCL
i = d|M) · d

=
Dj

2M
· E
[
D̃cFCL

i |M
]

=
Dj

2M
· 2M

N

=
DiDj

2M

Thus, the probability of placing an edge eij is DiDj

2M .
In general, we do not have a regular graph, which means the

breakdown between the degrees does not have the convenient
cancellation of sums as shown in equation 6. As the bias
from the cFCP approximation is less for edges with lower
likelihoods (see Figure 2.a), additional samplings due to
collisions will bias their probabilities slightly higher, while
the high degree edges will have likelihoods that are slightly
lower.

For sparse graphs, we assume the proportion of degrees is
close enough to one another such that the summations effec-
tively cancel. The difference between the two probabilities is
illustrated in Figure 2b-c. The dataset we use is a subset of the
Purdue University Facebook network, a snapshot of the class
of 2012 with approximately 2000 nodes and 15,000 edges—
using this smaller subset exaggerates the collisions and their
effects on the edge probabilities. We plot the edge probabilities
along the x-axis as outlined by the original CL method versus a
simulation of 10,000 networks for the cFCL edge probabilities.

The y-axis indicates the proportion of generated networks
which have the edge (we plot the top 10 degree nodes’ edges).

In panel (b), we show the probabilities for the original
network, where the probabilities are small and unaffected by
the fast model. To test the limits of the method, in panel
(c) we take the high degree nodes from original network and
expand them such that they have near

√
2M edges elsewhere

in the network. Additionally, these high degree nodes are
connected to each other, meaning they approach the case
where DiDj

2M > 1. We see that the randomly inserted edges still
follow the predicted slow CL value, although the probabilities
are slightly higher due to the increased degrees. It is only
in the extreme case where we connect

√
2M degree nodes to

one another that we see a difference in the realized probability
from the CL probability. These account for .05% of edges in
the augmented network, which has been created specifically
to test for problem cases. For social networks, it is unlikely
that these situations will arise.

V. TRANSITIVE CHUNG-LU MODEL

A large problem with the Chung-Lu model is the lack of
transitivity captured by the model. As many social networks
are formed via friendships, drawing randomly from distribu-
tion of nodes across the network fails to capture this property.
We propose the Transitive Chung Lu (TCL) model described
in algorithm 2, which selects edges based on the probability of
a ‘random surfer’ connecting two nodes across the network,
along with the the additional probability of creating a new
transitive edge between a pair of nodes connected by a two-
hop path. In the TCL model, we incorporate the transitive
edges while maintaining approximately the same transitional
probability matrix as the original CL model, implying the TCL
model has the same expected degree distribution as the original
network.

The algorithm begins by constructing a graph of M edges
using the cFCL model described in section IV. This gives us
an initial edge set E which has the same expected degree
distribution as the original data, as well as edge probabilities
P (ejk) =

DjDk

2M , an assumption we hold through all proofs in
this section. The algorithm then initializes a queue which will
be used to store nodes that have a higher priority for receiving
an edge. Next, we define an update step which replaces the
oldest edge in the graph with a new one selected according
to the TCL model, repeating this process for the specified
number of iterations. If the priority queue is not empty, we
will choose the next node in the queue to be vj , the first
endpoint of the edge; otherwise, on line 5 we sample vj
using the π distribution. With probability ρ the algorithm will
add an edge between vj and some node vi through transitive
closure by choosing an intermediate node vk uniformly from
j’s neighbors, then selecting vi uniformly from k’s neighbors.
In contrast, with probability (1−ρ) the algorithm will use the
CL method, randomly choosing vi from the graph according to
π. The TCL transition probability matrix PTCL is comprised
of two parts, the first part being the PCL transition matrix and

Algorithm 2 TCL(π, ρ,N, |E|, iterations)
1: ETCL = CL(π,N, |E|)
2: initialize(queue)
3: for iterations do
4: if queue is empty then
5: vj = sample-pi(π)
6: else
7: vj = pop(queue)
8: end if
9: r = sample-bernoulli(ρ)

10: if r = 1 then
11: vk = sample-uniform(ETCL

j)
12: vi = sample-uniform(ETCL

k)
13: else
14: vi = sample-pi(π)
15: end if
16: if eij 6∈ ETCL then
17: ETCL = ETCL ∪ eij
18: // remove oldest edge from ETCL

19: ETCL = ETCL \min(time(ETCL))
20: else
21: push(queue, vi)
22: push(queue, vj)
23: end if
24: end for
25: return(ETCL)

the second being the transitive closure transition probability
matrix.

Definition 2. Let PCLO be the transitive closure transition
probability matrix for the TCL algorithm. For two nodes vj , vk,
PCLO(ejk) is the transition probability of leaving vj and
arriving at vk:

PCLO(ejk) ∝
|V |∑

DCL
j =0

∑
ejk∈{0,1}

p(wjk|ejk, DCL
j)p(DCL

j |ejk)P (ejk)

Here p(DCL
j |ejk) refers to the probability of the degree of

the node vj and p(wjk|ejk, DCL
j) refers to the probability of

sampling the edge ejk from the edges currently present in the
graph. Both the degree of vj in the graph as well as whether
or not the edge exists, are marginalized out to calculate the
transition probability.

This transition matrix represents a hybrid between P and
PCL; the transition is picked according to the edges in
the network as in P , but the edges exist with probability
proportional to π (similar to PCL).

Either transition matrix, PCLO or PCL, can be used to
sample an additional node for the method to use as the other
endpoint. If the selected pair of nodes does not already have an
edge in the graph, the algorithm adds it and removes the oldest
edge in the graph. (Note the algorithm continually removes the
warmup CL edges.) If the selected pair already has an edge

in the graph, the selected endpoint nodes are placed in the
priority queue (lines 21 and 22). The replacement operation
is repeated many times to ensure that the original CL graph
is mostly replaced and then the final set of edges is returned
as the new graph. In practice, we find that M replacements is
sufficient to remove all edges generated originally by CL and
generate a reasonable sample.

In order to show that the TCL update operation preserves
the expected degree distribution, we prove the following:

1) The transitive closure transition matrix PCLO(ejk) is
approximately π for every vj .

2) TCL places edges with approximately π(i)π(j) proba-
bility.

3) The change in the expected degree distribution after a
TCL iteration is approximately zero.

Step 1: Transitive Closure Matrix is Approximately π

We begin by defining a few quantities. The first is the state
of the neighborhood around node vj , excluding two of its
possible neighbors vk1

, vk2
.

Definition 3. Let vj , vk1
, vk2

be nodes in V , where ej∗−{k1,k2}
is the set of existing edges, with vj as one endpoint, excluding
ejk1 , ejk2 . Define:

C = |{ej∗−{k1,k2}}|

to be the size of the set of edges that currently exist in the
generated graph from vj to its possible neighbors (excluding
vk1 , vk2). Let P (C) denote the probability of a particular
number of existing edges in C.

Next, the ratio of transition probabilities quantifies the odds
of picking an edge ejk1

versus ejk2
when leaving node vj .

Definition 4. Let vj , vk1
, vk2

be nodes in V with PX being a
transition probability matrix. Define:

RX(ejk1 , ejk2) =
PX(ejk1)

PX(ejk2
)

to be the ratio of transition probabilities when vj and landing
at vk1

, compared to leaving vj and landing at vk2
.

Since PCL defines the ideal transition probabilities, the
transition probability ratio bias defines how far the ratio
between two transition probabilities in a potential transition
probability matrix PX is from the desired ratio defined by
RCL.

Definition 5. Let vj , vk1
, vk2

be nodes in V with RX being the
ratio of transmission probabilities for some transition matrix
PX . Define the transition probability ratio bias to be:

δX(ejk1 , ejk2) = RX (ejk1 , ejk2)−RCL (ejk1 , ejk2)

In essence, δ encapsulates how far our transition probability
matrix is from the desired distribution π. We now quantify how
far the transition probabilities defined by PCLO are from PCL.

Theorem 1. For nodes vj , vk1
, vk2

, and a given C defined
as in Definition 3, the transition probability ratio bias for the
transition matrix defined by PCLO is:

δCLO(ejk1 , ejk2) =
Dk1

[
C + 2− DjDk1

2M

]
Dk2

[
C + 2− DjDk2

2M

] − Dk1

Dk2

Proof: Begin by computing RCLO(ejk1
, ejk2

). For a
given C, Definition 2 reduces to:

PCLO(ejk1) = P (C)
∑

ejk1
∈{0,1}

P (ejk1)P (wjk1 |C, ejk1)

The case where ejk1 does not exist is 0 (since the walk
probability is 0 in such cases). Thus, the above can be put
in terms of the marginalization over the other free variable
(ejk2

):

PCLO(ejk1
) = P (C)P (ejk1

)
∑

ejk2
∈{0,1}

P (ejk2
)P (wjk1

|C, ejk1
, ejk2

)

= P (C)P (ejk1
)

[[
1− P (ejk2

)
] 1

C + 1
+ P (ejk2

)
1

C + 2

]
The ratio of transition probabilities for CLO is:

RCLO(ejk1 , ejk2)

=
P (C)P (ejk1

)
[
[1− P (ejk2

)] 1
C+1 + P (ejk2

) 1
C+2

]
P (C)P (ejk2

)
[
[1− P (ejk1

)] 1
C+1 + P (ejk1

) 1
C+2

]
=
P (ejk1

) [[1− P (ejk2
)] (C + 2) + P (ejk2

)(C + 1)]

P (ejk2) [[1− P (ejk1)] (C + 2) + P (ejk1)(C + 1)]

=
Dk1

[
C + 2− DjDk2

2M

]
Dk2

[
C + 2− DjDk1

2M

]
Since RCL(ejk1

, ejk2
) =

Dk1

Dk2
, the theorem holds.

There are two interesting cases for this transition matrix.
The first is the case where the input graph is regular—where
all the edge probabilities are the same.

Corollary 1. In the case where the input network is a regular
graph, the CLO transition probability ratio bias is 0.

Proof: Let Dk be the degree for all nodes in the original
network. From Theorem 1, we have:

δCLO(ejk1
, ejk2

) =
Dk1

[
C + 2− DkDk

2M

]
Dk2

[
C + 2− DkDk

2M

] − Dk1

Dk2

= 0

The second interesting, and more practical, case is when
either the edge probabilities are small, or the value of C is
large. In these instances, the transition ratio bias is nearly
zero.

Corollary 2. As C increases or P (ejk1
), P (ejk2

) decrease,
δCLO(ejk1

, ejk2
) ≈ 0.

100 0 100 200 300 400 500
Degree

0.004

0.002

0.000

0.002

0.004

0.006

0.008

0.010

B
ia

s

(a) Facebook

100 0 100 200 300 400 500
Degree

0.004

0.002

0.000

0.002

0.004

0.006

0.008

0.010

B
ia

s

(b) PurdueEmail

Fig. 3. Transition edge biases for two datasets. The larger dataset has
considerably less bias, implying the method works better for larger datasets.

Proof: Note that as the ratio

C + 2− DjDk2

2M

C + 2− DjDk1

2M

approaches 1, δCLO(ejk1 , ejk2) ≈ 0. Should C be large the
numerator and denominator are both approximately C+2 since
P (ejk1

) and P (ejk2
) are bounded by 1. In addition, if P (ejk1

)
and P (ejk2

) tend to 0 then the numerator and denominator are
also both approximately 1 due to the constant 2. In either case,
δCLO(ejk1 , ejk2) ≈ 0.

Using the above theorem and corollary it is easy to see that
if the first step away from node vj is π distributed, the second
is as well. A key question is how much bias should we see in
large social networks. In Figure 3 we show the average bias
for every degree present in two of our real-world networks:
Facebook and PurdueEmail. For each degree we sample:
• A center node vc from the nodes with the desired degree
• Two neighboring vn1 , vn2 nodes according to π

We set C to be the expected value of the present degree miss-
ing two of the edges followed by computing δCLO(ecn1

, ecn2
)

and δCLO(ecn2 , ecn1). The process was repeated 10,000 times
for every degree, and Figure 3 reports the averages. Both
datasets results in biases under .005 for every degree, with
PurdueEmail biases being much lower. This is reasonable,
since it implies the method improves on graphs with larger
size (Table I.a).

Step 2: TCL places edges with approximate probability
π(i)π(j)

Utilizing the above theorem and corollary we show the
transition matrix for the TCL algorithm is approximately π.

Proposition 4. For two nodes vj , vk, the transition matrix for
the TCL model PTCL(ejk) is approximately π.

Proof: Let ρ be the probability of selecting according
to two random walk steps from PCLO and (1 − ρ) be the
probability of selecting according to PCL. PTCL (ejk) is then

ρPCLO(ejk) + (1− ρ)PCL(ejk) ≈ π(k)[ρ+ (1− ρ)] = π(k)

We next show the probability of placing edge eij in the
graph is π(j)π(i).

Theorem 2. The TCL algorithm selects edge eij for insertion
with probability: P (eij) = π(i) ∗ π(j).

Proof: The first node is selected directly from π while
the second is selected according to PTCL, which was shown
in Proposition 4 to be π-distributed.

Therefore, the inductive step of TCL will place the end-
points of the new edge according to π.

Step 3: The expected degree distribution of TCL matches CL

Corollary 3. The expected degree distribution of the graph
produced by TCL is the same as the degree distribution of the
input graph.

Proof: The inductive step of TCL places an edge with
endpoints distributed according to π, so the expected increase
in the degree of any node vi is π(i). However, the inductive
step will also remove the oldest edge that was placed into the
network. Since the oldest edge can only have been placed in
the graph through a Chung-Lu process or a transitive closure,
the expected decrease in the degree is also π(i), which means
the expected change in the degree distribution is zero. Because
the CL initialization step produces a graph with expected
degree distribution equal to the input graph’s distribution,
and the TCL update step causes zero expected change in the
degree distribution, the output graph of the TCL algorithm
has expected degree distribution equal to the input graph’s
distribution by induction.

This implies that the algorithm is placing edges according
to π(i)π(j), and the algorithm continues for M insertions.
This is the same approach that the cFCL algorithm—which
means that if the cFCL method matches the slow CL, then
the TCL does as well. In practice, TCL and CL capture the
degree distribution well (see Section VI).

A. Fitting Transitive Chung Lu

Now that we have introduced a ρ parameter which controls
the proportion of transitive edges in the network we need a
method for learning this parameter from the original network.
For this, we need to estimate the probability ρ by which edge
formation is done by triadic closure, and the probability 1−ρ
by which the random surfer forms edges. We can accomplish
this estimation using Expectation Maximization (EM). First,
let zij ∈ Z be latent variables on each eij ∈ E with values
zij ∈ {1, 0}, where 1 indicates the edge eij was placed by
a transitive closure and 0 indicates the edge was placed by a
random surfer.

We can now define the conditional probability of placing an
edge eij from starting node vj given the method zij by which
the edge was placed:

P
(
eij |zij = 1, vj , ρ

t
)

=ρt
∑

vk∈ej∗

I[vi ∈ ek∗]
Dj

1

Dk

P
(
eij |zij = 0, vj , ρ

t
)

=(1− ρt) · π(i)

Starting at vj , the probability of the edge existing between
vi and vj given that the edge was placed due to a triangle

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

C
u
rr

e
n
t

E
st

im
a
te

d
 R

h
o

Convergence Rate

Epinions
Facebook
Gnutella30
PurdueEmail

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
rr

e
n
t

E
st

im
a
te

d
 R

h
o

Convergence Rate

Epinions
Facebook
Gnutella30
PurdueEmail

(b)

Fig. 4. Convergences of the EM algorithm—both in terms of time and
number of iterations. 10000 samples per iteration.

closure is ρ times the probability of walking from vj to a
mutual neighbor of vi and vj and then continuing the walk on
to vi. Conversely, (1−ρ) ·π(i) is the probability the edge was
placed by a random surfer. We now show the EM algorithm.

Expectation: Note that the conditional probability of zij ,
given the edge eij and ρ, can be defined in terms of the
probability of an edge being selected by the triangle closure
divided by the probability of the edge being placed by any
method. Using Bayes’ Rule, our conditional distribution on Z
is:

P
(
zij = 1|eij , vj , ρt

)
=

ρt
[∑

vk∈ej∗
I[vi∈ek∗]

Dj

1
Dk

]
ρt
[∑

vk∈ej∗
I[vi∈ek∗]

Dj

1
Dk

]
+ (1− ρt) [π(i)]

And our expectation of zij is:

E[zij |ρt] = P
(
zij = 1|eij , vj , ρt

)
Maximization: To maximize this expectation, we note that

ρ is a Bernoulli variable representing P (zij = 1). We
sample a set of edges S uniformly from the graph to use as
evidence when updating ρ. The variables zij are conditionally
independent given the edges and nodes in the graph, meaning
the maximum likelihood update to ρ is then calculating the
expectation of zij ∈ S and then normalizing over the number
of edges in S:

ρt+1 =
1

|S|
∑
zij∈S

E[zij |ρt]

We sampled the edge subsets uniformly at random from the
set of all edges. This can be done quickly using the node ID
vector we constructed for sampling from the π distribution.
Since each node i appears Di times in this vector, sampling
a node from the vector and then uniformly sampling one of
its edges results in a Di

M ∗
1
Di

= 1
M probability of sampling

any given edge. We sampled subsets of 10000 edges per
iteration and the EM algorithm converged in a few seconds,
even on datasets with millions of edges. Figure 4 shows the
convergence time on each of the datasets.

B. Time Complexity

The methods presented for both generating a new network
and for learning the parameter ρ can be done in an efficient
manner. To show this, we need to bound the expected number

Dataset Nodes Edges
Epinions 75,888 811,480
Facebook 77,110 500,178

Gnutella30 36,682 176,656
PurdueEmail 214,773 1,711,174

(a) Size

Dataset CL KPGM TCL
Epinions N/A 9,105.4s 2.5s
Facebook N/A 5,689.4s 2.0s

Gnutella30 N/A 3,268.4s 0.9s
PurdueEmail N/A 8,360.7s 3.0s

(b) Learning Time

Dataset CL KPGM TCL
Epinions 20.0s 151.3s 64.6s
Facebook 14.2s 92.4s 30.8s

Gnutella30 4.2s 67.8s 7.0s
PurdueEmail 61.0s 285.6s 141.0s

(c) Generation Time

TABLE I
DATASET SIZES, ALONG WITH LEARNING TIMES AND RUNNING TIMES FOR EACH ALGORITHM

of attempts to insert an edge into the graph. Note that a node
vi with c edges has probability π(i) = c

M of colliding with its
own edge on the draw from π; by extension, the probability of
colliding with its own edges k times is π(i)k. This corresponds
to a geometric distribution, which has the expected value of
hits H (collisions) on the edges of the nodes:

E [H|π(i)] = (1− π(i))

∞∑
k=1

π(i)k−1 =
1

1− π(i)

This shows the expected number of attempts to insert an
edge is bounded by a constant. As a result, we can generate
the graph in O(N + M), the same complexity as the FCL
model. The initial step of running the basic CL model takes
O(N +M). Next, the algorithm generates M insertions while
gradually removing the current edges. This corresponds to
lines 3-24 of Algorithm 2. In this loop, the longest operations
are selecting randomly from neighbors and removing an edge.
Both of these operations cost are in terms of the maximum
degree of the network, which we assumed bounded, meaning
the operations can be done in O(1) time. As a result, the total
runtime of graph generation is O(N +M).

For the learning algorithm, assume we have I iterations
which gather s samples. It is O(1) to draw a node from the
graph and O(1) to choose a neighbor, meaning each iteration
costs O(s). Coupled with the cost of creating the initial π
sampling vector, the total runtime is then O(N +M + I · s).

VI. EXPERIMENTS

For our experiments, we compared three different graph
generating models. The first is the fast Chung Lu (CL) gener-
ation algorithm with our correction for the degree distribution.
The second is Kronecker Product Graph Model (KPGM [2])
implemented with code from the SNAP library1. Lastly, we
compared the Transitive Chung Lu (TCL) method presented in
this paper using the EM technique to estimate the ρ parameter.
All experiments were performed in Python on a Macbook
Pro, aside from the KPGM parameters which were generated
on a desktop computer using C++. All the datasets were
transformed to be undirected by reflecting the edges in the
network, except for the Facebook network which is already
undirected.

1SNAP: Stanford Network Analysis Project. Available at
http://snap.stanford.edu/snap/index.html. SNAP is written in C++.

A. Datasets
To empirically evaluate the models, we learned model pa-

rameters from real-world graphs (Table I.a) and then generated
new graphs using those parameters. We then compared the
network statistics of the generated graphs with those of the
original networks.

The first dataset we analyze is Epinions [15]. This network
represents the users of Epinions, a website which encourages
users to indicate other users whose consumer product reviews
they ‘trust’. The edge set of this network represents nomina-
tions of trustworthy individuals between the users.

Next, we study the collection of Facebook friendships from
the Purdue University Facebook network. In this network, the
users can add each other to their lists of friends and so the
edge set represents a friendship network. This network has
been collected over a series of snapshots for the past 4 years;
we use nodes and friendships aggregated across all snapshots.

The Gnutella30 network differs from the other networks
presented. Gnutella is a Peer2Peer network where users are
attempting to find seeds for file sharing [16]. The user reaches
out to its current peers, querying if they have a file. If not,
the friend refers them to other users who might have a file,
repeating this process until a seed user can be found.

Lastly, we study a large collection of emails gathered from
the SMTP logs of Purdue University [17]. This dataset has
an edge between users who sent e-mail to each other. The
mailing network has a small set of nodes which sent out mail
at a vastly greater rate than normal nodes; these nodes were
most likely mailing lists or automatic mailing systems. In order
to correct for these ‘spammer’ nodes, we remove nodes with
a degree greater than 1, 000 as these nodes did not represent
participants in any kind of social interaction.

B. Running Time
In Figure 4 we can see the convergence of the EM algorithm

when learning parameter ρ, both in terms of the number of
iterations and in terms of the total clock runtime. Due to
the independent sample sets used for each iteration of the
algorithm, we can estimate whether the sample set in each
iteration is sufficiently large. If the sample size is too small,
the algorithm will be susceptible to variance in the samples
and will not converge. Using Figure 4.a we can see that after 5
iterations with 10,000 samples each iteration our EM method
has converged to a smooth line.

In addition to the convergence in terms of iterations, in
Figure 4.b we plot the wall time against the current estimated

0 500 1000 1500 2000 2500 3000 3500
Node Degree

10-4

10-3

10-2

10-1

100

C
C

D
F

Degree Distribution

Original
Kronecker
CL
TCL

(a) Epinions

0 200 400 600 800 10001200140016001800
Node Degree

10-4

10-3

10-2

10-1

100

C
C

D
F

Degree Distribution

Original
Kronecker
CL
TCL

(b) Facebook

0 10 20 30 40 50 60 70 80
Node Degree

10-4

10-3

10-2

10-1

100

C
C

D
F

Degree Distribution

Original
Kronecker
CL
TCL

(c) Gnutella30

0 200 400 600 800 1000 1200
Node Degree

10-5

10-4

10-3

10-2

10-1

100

C
C

D
F

Degree Distribution

Original
Kronecker
CL
TCL

(d) PurdueEmail

Fig. 5. Degree distribution for the Epinion, Facbook, Gnutella30 and PurdueEmail datasets.

ρ. The gap between 0 and the start of the colored lines
indicates the amount of overhead needed to generate our
degree distribution statistic and π sampling vector for the given
graph (a step also needed by CL). The Purdue Email network
has the longest learning time at 3 seconds. For the same Email
network, learning the KPGM parameters took approximately
2 hours and 15 minutes, meaning our TCL model can learn
parameters from a network significantly faster than the KPGM
model (shown in Table I.b).

Next, the performance in terms of graph generation speed
is tested, shown in Table I.c. The maximum time taken to
generate a graph by CL is 61 seconds for the Purdue Email
dataset, compared to 141 seconds to generate via TCL. Since
TCL must initialize the graph using CL and then place its
own edges, it is logical that TCL requires at least twice as
long as CL. The runtimes indicate that the transitive closures
cost little more in terms of generation time compared to the
CL edge insertions. KPGM took 285 seconds to generate the
same network. The discrepancy between KPGM and TCL is
the result of the theoretical bounds of each—KPGM takes
O(M logN) while TCL takes O(M).

C. Graph Statistics

In order to test the ability of the models to generate networks
with similar characteristics to the original four networks, we
compare them on three well known graph statistics: degree
distribution, clustering coefficient, and hop plot.

Matching the degree distribution is the goal of both the
CL and KPGM models, as well as the new TCL algo-
rithm. In Figure 5, the degree distributions of the networks
generated from each model for each real-world network is
shown, compared against the original real-world networks’
degree distribution. The measure used along the y-axis is the
complementary cumulative degree distribution (CCDF), while
the x-axis plots the degree, meaning the y-value at a point
indicates the percentage of nodes with greater degree. The
four datasets have degree distributions of varying styles—the
three social networks (Epinions, Facebook, and PurdueEmail)
have curved degree distributions, compared to Gnutella30
whose degree distribution is nearly straight, indicating an
exponential cutoff. As theorized, both the CL and TCL have
a degree distribution which closely matches their expected
degree distribution, regardless of the distribution shape. KPGM
best matches the Gnutella30 network, sharing an exponential

cutoff indicated by a straight line, but is still separated from
the original network’s distribution. With the social networks,
KPGM has an alternating dip/flat line pattern which does not
resemble the true degree distribution.

The next statistic we examine is TCL’s ability to model the
distribution of local clustering coefficients compared to CL
and KPGM (see Figure 6). As with the degree, we plot the
CCDF on the y-axis, but against the local clustering coefficient
on the x-axis. On the network with the largest amount of
clustering, Epinions, TCL matches the distribution of clus-
tering coefficients well with the TCL distribution covering the
original distribution. The same effect is visible for Facebook
and PurdueEmail, despite the large size of the latter. The
Gnutella30 has a remarkably low amount of clustering—so
low that it is plotted in log-log scale—yet TCL is able to
capture the distribution as well. Furthermore, the networks
exhibit a range of ρ values which TCL can accurately learn.

In contrast, CL and KPGM cannot model the clustering
distribution. For each network, both methods lack appreciable
amounts of clustering in their generated graphs, even under-
cutting the Gnutella30 network which has far less clustering
than the others. This shows a key weakness with both models,
as clustering is an importation characteristic of small-world
networks.

The last measure examined is the Hop Plot (see Figure 7).
The Hop Plot indicates how tightly connected the graph is;
for each x-value, the y-value corresponds to the percentage of
nodes that are reachable within paths of the corresponding
length. When generating the hop plots, we excluded any
nodes with infinite hop distance and discarded disconnected
components and orphaned nodes. All of the models capture
the hop plots well, with TCL producing hop plots very close
to those of the standard CL. This indicates that the transitive
closures incorporated into the TCL model did not impact the
connectivity of the graph and the gains in terms of clustering
can be obtained without reducing the long range connectivity.

VII. CONCLUSIONS

In this paper we demonstrated a correction to the fast Chung
Lu estimation algorithm and introduced the Transitive Chung
Lu model. Given a real-world network, the TCL algorithm can
learn a model and generate graphs which accurately captures
the degree distribution, clustering coefficient distribution and
hop plot found in the training network, where alternative

0.0 0.2 0.4 0.6 0.8 1.0
Clustering Amount

0.0

0.2

0.4

0.6

0.8

1.0

C
C

D
F

Distribution of Clustering

Original
Kronecker
CL
TCL

(a) Epinions

0.0 0.2 0.4 0.6 0.8 1.0
Clustering Amount

0.0

0.2

0.4

0.6

0.8

1.0

C
C

D
F

Distribution of Clustering

Original
Kronecker
CL
TCL

(b) Facebook

10-5 10-4 10-3 10-2 10-1 100

Clustering Amount

10-3

10-2

10-1

100

C
C

D
F

Distribution of Clustering

Original
Kronecker
CL
TCL

(c) Gnutella30

0.0 0.2 0.4 0.6 0.8 1.0
Clustering Amount

0.0

0.2

0.4

0.6

0.8

1.0

C
C

D
F

Distribution of Clustering

Original
Kronecker
CL
TCL

(d) PurdueEmail

Fig. 6. Clustering Coefficient Distribution for the Epinion, Facbook, Gnutella30 and PurdueEmail datasets.

0 1 2 3 4 5 6 7 8 9
Hop Distance

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Hop Plot

Original
Kronecker
CL
TCL

(a) Epinions

0 1 2 3 4 5 6 7 8 9
Hop Distance

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Hop Plot

Original
Kronecker
CL
TCL

(b) Facebook

0 1 2 3 4 5 6 7 8 9
Hop Distance

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Hop Plot

Original
Kronecker
CL
TCL

(c) Gnutella30

0 1 2 3 4 5 6 7 8 9
Hop Distance

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Hop Plot

Original
Kronecker
CL
TCL

(d) PurdueEmail

Fig. 7. Hop plots for the Epinion, Facbook, Gnutella30 and PurdueEmail datasets.

methods fail on one or more of these characteristics. We
proved the algorithm generates a network in time thats linear
in the number of edges, on the same order as the original CL
algorithm and faster than KPGM. The amount of clustering
in the generated network is controlled by a single parameter,
and we demonstrated how estimating the parameter is several
orders of magnitude faster than estimating the parameters
of the KPGM model. However, while our analysis of TCL
shows how it can generate networks that match the degree
distributions and clustering of a real-world network, usage
of a transitivity parameter for clustering is still a heuristic
approach. A more formal analysis of the clustering expected
from such a model would be worth pursuing.

ACKNOWLEDGEMENTS

This research is supported by NSF under contract number(s)
IIS-1017898 and IIS-0916686. The U.S. Government is au-
thorized to reproduce and distribute reprints for governmental
purposes notwithstanding any copyright notation hereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements either expressed
or implied, of NSF or the U.S. Government. We also thank
Nathan Davis and Joshua Patchus for useful discussions.

REFERENCES

[1] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks.” Nature, vol. 393, no. 6684, pp. 440–442, Jun. 1998.

[2] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani, “Kronecker graphs: An approach to modeling networks,” 2009.

[3] S. Wasserman and P. E. Pattison, “Logit models and logistic regression
for social networks: I. An introduction to Markov graphs and p*,”
Psychometrika, vol. 61, pp. 401–425, 1996.

[4] F. Chung and L. Lu, “The average distances in random graphs with
given expected degrees,” Internet Mathematics, vol. 1, 2002.

[5] A. Pinar, C. Seshadhri, and T. G. Kolda, “The similarity be-
tween stochastic kronecker and chung-lu graph models,” CoRR, vol.
abs/1110.4925, 2011.

[6] A. Barabasi and R. Albert, “Emergence of scaling in random networks,”
Science, vol. 286, pp. 509–512, 1999.

[7] C. Seshadhri, T. G. Kolda, and A. Pinar, “Community structure and
scale-free collections of Erdős-Rényi graphs,” arXiv:1112.3644 [cs.SI].

[8] P. Erdos and A. Renyi, “On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad. Sci, vol. 5, pp. 17–61, 1960.

[9] D. F. Gleich and C. Seshadhri, “Vertex neighborhoods, low conductance
cuts, and good seeds for local community methods,” in KDD2012.

[10] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Technical Report
1999-66, November 1999, previous number = SIDL-WP-1999-0120.

[11] O. Frank and D. Strauss, “Markov graphs,” Journal of the American
Statistical Association, vol. 81:395, pp. 832–842, 1986.

[12] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and
E. Upfal, “Stochastic models for the web graph,” in Proceedings of the
42st Annual IEEE Symposium on the Foundations of Computer Science.

[13] P. O’Connor, P. O’Connor, and A. Kleyner, Practical
Reliability Engineering, ser. Quality and Reliability Engineering
Series. John Wiley & Sons, 2012. [Online]. Available:
http://books.google.com/books?id=V1Ttz5L V50C

[14] D. S. G. Stirling, Mathematical Analysis And Proof, ser. Albion
Mathematics & Applications Series. Albion, 1997. [Online]. Available:
http://books.google.com/books?id=kBy3 7syd7cC

[15] M. Richardson, R. Agrawal, and P. Domingos, “Trust management for
the semantic web,” in The Semantic Web - ISWC 2003.

[16] M. Ripeanu, A. Iamnitchi, and I. Foster, “Mapping the gnutella network,”
IEEE Internet Computing, vol. 6, pp. 50–57, January 2002.

[17] N. Ahmed, J. Neville, and R. Kompella, “Network sampling via edge-
based node selection with graph induction,” in Purdue University, CSD
TR #11-016, 2011, pp. 1–10.

