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Abstract

Much of the past work in network analysis has focused on
analyzing discrete graphs, where binary edges represent the
“presence” or “absence” of a relationship. Since traditional
network measures (e.g., betweenness centrality) assume a
discrete link structure, data about complex systems must be
transformed to this representation before calculating network
properties. In many domains where there may be uncertainty
about the relationship structure, this transformation to a dis-
crete representation will result in a lose of information. In
order to represent and reason with network uncertainty, we
move beyond the discrete graph framework and develop so-
cial network measures based on a probabilistic graph rep-
resentation. More specifically, we develop measures of path
length, betweenness centrality, and clustering coefficient—
one set based on sampling and one based on probabilistic
paths. We evaluate our methods on two real-world networks,
Enron and Facebook, showing that our proposed methods
more accurately capture salient effects without being suscep-
tible to local noise.

Introduction

Much of the past work in network analysis has focused on
analyzing discrete graphs, where entities are represented as
nodes and binary edges represent the “presence” or “ab-
sence” of a relationship between entities. For example, net-
work measures such as the average shortest path length and
clustering coefficient have been used to explore the proper-
ties of biological and information networks (Watts and Stro-
gatz 1998), while measures such as centrality have been used
for determining the most important and/or influential people
in social networks (Brandes 2001).

The main limitation of measures defined for a discrete
representation is that they cannot easily be applied to repre-
sent and reason about uncertainty in the link structure. Link
uncertainty may arise in domains where graphs evolve over
time, as links observed at a earlier time may no longer be
present or active at the the time of analysis. In addition, there
may be uncertainty with respect to the strength of the artic-
ulated relationships (Xiang, Neville, and Rogati 2010), or in
other network domains (e.g., gene/protein networks) where
relationships can only be indirectly observed. In this work,
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we formulate a probabilistic graph representation to analyze
domains with these types of uncertainty.

The notion of probabilistic graphs have been studied pre-
viously. Notably, Frank (1969) has shown that for graphs
with probability distributions over the weights for each edge,
Monte Carlo methods can be used to sample to determine the
shortest path probabilities between the edges. Then, Hua and
Pei (2010) extends this to find the shortest weighted paths
most likely to complete within a certain time constraint (e.g.,
the shortest distance across town in under half an hour).
However, there has been little focus on how probabilistic
paths and other graph structures should be incorporated into
social network analysis measures.

Here, we develop analogs for three standard discrete
graph measures—average shortest path length, betweenness
centrality, and clustering coefficient—in the probabilistic
setting. Specifically, we use probabilities on graph edges to
represent link uncertainty and consider the distribution of
possible (discrete) graphs that they define. Our first set of
measures compute expected values over the distribution of
graphs, sampling a set of discrete graphs from this distribu-
tion in order to efficiently approximate the path length, cen-
trality, and clustering measures. We then develop a second
set of measures that can be directly computed from the prob-
abilities, which removes the need for graph sampling. This
second approach focuses on the notion of the most probable
paths in the network, rather than the shortest, and introduces
a prior to incorporate the belief that the probability of suc-
cessful information transfer is a function of path length.

We evaluate our measures on two real world networks:
Enron email and Facebook micro communications, where
the network transactions for each are associated with times-
tamps (e.g., email date). Thus we are able to compute the
local and global measures at multiple time steps, where at
each time step t we consider the network information avail-
able up to and including t. We compare against two different
approaches that use the discrete representation: an aggregate
approach, which unions all previous transactions (up to t)
into a discrete graph, and a slice approach, where only trans-
actions from a small window (i.e., [t − δ, t]) are included in
the discrete representation. Our analysis shows that our pro-
posed methods more accurately capture the salient changes
in graph structure compared to the discrete methods without
being susceptible to local, temporal noise.



Sampling Probabilistic Graphs

Let G = 〈V,E〉, be a graph where V is a collection of nodes
and E ∈ V ×V is the set of edges, or relationships, between
the nodes. In order to represent and reason about relation-
ship uncertainty, we associate each edge eij (which connects
node vi and vj) with a probability P (eij). Then we can de-
fine G to be a distribution of discrete, unweighted graphs.
Assuming independence among edges, the probability of a
graph G ∈ G is: P (G) =

Q

eij∈E P (eij)
Q

eij /∈E [1 − P (eij)].

Note that although we assume edge independence for gen-
eration, this model can represent correlations in the graph
structure by tying edge parameters (Leskovec et al. 2010).
Since we have assumed edge independence, we can sam-
ple a graph GS from G by sampling edges independently
according to their probabilities P (eij). Based on this, we
can develop methods to compute the expected shortest path
lengths, betweenness centrality rankings, and clustering co-
efficients using sampling.

Calculating graph measures in this setting can be viewed
generally as computing the expectation of a function f over
a the distribution of graphs G. For any reasonable sized
graph, the distribution G will be intractable to enumerate
explicitly, so to approximate the expected value of arbi-
trary functions we can sample from G. More specifically,
we sample a graph Gs by sampling edges uniformly at
random according to their edge probabilities P (eij). Each
graph that we sample in this manner has equal likelihood,
thus we can draw m sample graphs GS = {G1, ..., Gm}
and calculate the expected value for f with the following:
EG [ f(G) ] =

P

G∈G f(G) · P (G) ≃ 1
m

P

m f(Gm). f can be
any function over discrete, unweighted graphs.

In this paper we consider three social network mea-
sures: average shortest path length (SP), betweenness cen-
trality (BC), and clustering coefficient (CC). Let ρij define
a path of q vertices connecting two vertices vi and vj , such
that for every vk, vk+1 ∈ q there exists an edge ek,k+1 .
We then define the average shortest path length in G as:
fSP (G) = 1

|V |·(|V |−1)

P

i∈V

P

j∈V ;j 6=i |ρ
min
ij |. Additionally,

we define the betweenness centrality (BC) for a particular
node vi as fBCi

(G)= |{ρmin
jk ∈G :vi∈V (ρjk) ∧ i 6=j, k}|. The

betweenness centrality ranking (BCR) for a node vi is then
simply its index when all node BCs are ranked high to low.
Lastly, we define the clustering coefficient (CC) for a node
vi to be fCCi

= 1
|Ni|(|Ni|−1)

∑
vj∈Ni

∑
vk∈Ni,k 6=j IE(ejk),

where Ni are the vertices vj such that eij = 1. More precise
details are available in Pfeiffer and Neville (2011).

Probabilistic Path Length

In the previous section, we discussed an extension of dis-
crete notions of shortest paths and centrality for a proba-
bilistic graph framework, showing how to approximate ex-
pected values via sampling. However, since the expectation
is over possible worlds (i.e., G ∈ G), focusing on shortest
paths may no longer be the best way to capture node im-
portance. We note that previous work in the discrete frame-
work (where all observed edges are equally likely) used
shortest paths as a proxy for importance. This implies a
prior belief that shorter paths are more likely to be used

successfully to transfer information and/or influence in the
network. In domains with link uncertainty, the flow of in-
formation/influence will depend on both the existence of
paths in the network and the use of those paths for commu-
nication/transmission. Thus, a measure that explicitly uses
the edge probabilities to calculate most probable paths may
more accurately highlight nodes that serve to connect many
parts of the network. We discuss these issues more below.

Most Probable Paths To begin, we extend beyond dis-
crete paths to consider probabilistic paths in our frame-
work. Specifically, we calculate the probability of the ex-
istence of a path ρij as follows (again assuming edge inde-
pendence): P (ρij) =

Q

euv∈E(ρij) P (euv). Using path prob-

abilities, we can now describe the notion of the most prob-
able path. Given two nodes vi, vj , the most probable path

path is simply the one with maximum likelihood: ρML
ij =

argmax P (ρij). We can compute the most likely paths in
much the same way that shortest paths are computed on
weighted discrete graphs, by applying Dijkstra’s shortest
path algorithm, but instead of expanding on the shortest
path, we expand the most probable path.

Transmission Prior Previous focus on shortest paths for
assessing centrality relies on an implicit assumption that if
an edge connects two nodes that it can be successfully used
for transmission of information and/or influence in the net-
work. Although prior work on information propagation in
networks uses transmission probabilities, to our knowledge
transmission probabilities have not previously been incor-
porated into node centrality measures. In our probabilistic
framework, transmission probabilities can be incorporated
to penalize the likelihood of longer paths in the graph. We
conjecture that this approach will more accurately capture
the role nodes play in the spread of information across mul-
tiple paths in the network.

To incorporate transmission likelihood into probabilistic
paths, we assign a probability β of success for every step in
a particular path—corresponding to the probability that in-
formation is transmitted across an edge and is received by
the neighboring node. If we denote l to be the length of a
path ρ, then we are interested in the case where all transmis-
sions succeed, or βl. Using this prior allows us to represent
the expected probability of information spread in and intu-
itive manner, giving us a parameter β which we can adjust
to fit our expectations of information spread in the graph.

ML Handicapped Paths Combining the notion of prob-
abilistic paths with an appropriate prior for modeling the
probability of information spreading along the edges in
the path, we can formulate the maximum likelihood hand-
icapped path between two nodes vi and vj as follows:

ρMLH
ij = argmaxρij

h

P (ρij) · β
( |ρij | )

i

. To compute the most

likely handicapped (MLH) paths, we follow the same formu-
lation as the most probable paths, keeping track of the path
length and posterior at each point. In the MLH formulation,
probable paths are weighted by likelihood of transmission,
thus nodes that lie on paths that are highly likely and rela-
tively short, will have a high BC ranking. To calculate BCR
ranking based on MLH paths, we can modify the Brandes



betweenness centrality algorithm (Brandes 2001), having it
backtrack from the path that has the lowest probability of
occurrence. Efficiency and the MLH relationship to discrete
graphs can be found in Pfeiffer and Neville (2011).

Probabilistic Clustering Coefficient

We now outline a probabilistic measure of clustering co-
efficient that can be computed without sampling. If we
again assume independent edges, the probability of trian-
gle existence is equal to the product of the probabilities of
the three sides. The expected number of triangles is then
the sum of the triangles probabilities that include a given
node vi. Denoting Tri to be the expected triangles includ-
ing vi: EG [Tri] =

P

vj ,vk∈Ni,vj 6=vk
[P (eij) · P (eki) · P (ejk)].

Similarly we can denote Coi to be the expected com-
binations (i.e., pairs) of the neighbors of vi ans de-
fine the number of expected pairs as: EG [Coi] =
P

vj ,vk∈Ni,vj 6=vk
[P (eij) · P (eki)]. We can then define the

probabilistic clustering coefficient to be the expectation of
the ratio Tri/Coi, and approximate it via a first order Tay-
lor expansion (Elandt-Johnson and Johnson 1980): CCi =

EG

h

Tri

Coi

i

≈
EG [Tri]
EG [Coi]

. Again, efficiency and relationships to

discrete graphs can be found in Pfeiffer and Neville (2011).

Experiments

To investigate the performance of our proposed MLH and
sampling methods for average path length, betweenness cen-
trality and clustering coefficient, we compare to traditional
baseline social network measures on data from Enron and
Facebook. These datasets consist of time-stamped transac-
tions among people (e.g., email, friend links). We will use
the temporal activity information to derive probabilities for
use in our methods, and evaluate our measures at multiple
time steps to show the evolution of measures in the two
datasets. For Enron, we consider the subset of the data com-
prised of the emails sent between employees, resulting in
a dataset with 50,572 emails among 151 employees. The
second dataset is from the Purdue University Facebook net-
work. Specifically we consider one year’s worth of wall-to-
wall postings between users in the class of 2011 subnetwork.
The sample has 59,565 messages between 2,648 nodes—
considerably larger than Enron.

We compare four network measures for each timestep t in
each dataset. When evaluating at t, each method is able to
utilize the graph edges that have occurred up to and includ-
ing t. As baselines, we compare to (1) an aggregate method,
which at a particular time t computes standard measures for
discrete graphs (e.g., BCR) on the union of edges that have
occurred up to and including t, and (2) a time slice method,
which again computes the standard measures, but only con-
siders the set of edges that occur within the time window
[t−δ, t]. For both Enron and Facebook we used δ=14 days.

We then compare to the sampling and MLH measures.
For both the probabilistic methods, we use a measure of
relationship strength based on exponentially decayed mes-
sage counts as the edge probabilities for our analysis –
note that any notion of uncertainty can be substituted at
this step. We define the probability of an edge eij to be

(a) (b)

(c) (d)

Figure 1: BCR of Lay and Skilling over time. Red lines in-
dicate Skilling’s CEO announcement and resignation.

the likelihood that two nodes vi and vj have an active re-
lationship at the current timestep tnow. The likelihood of
activity is conditioned on having observed a communica-
tion message mij between the two nodes at time t(mij),
where the impact of the message decays exponential in time:
P

`

et
ij |λ, mij

´

= exp
˘

− 1
λ

(tnow − t (mij))
¯

. Assuming that
we have k messages between vi and vj , all of the mes-

sages m1
ij , . . . ,m

k
ij contribute independently to relationship

strength. Specifically, we define the probability of an active
relationship to be 1 minus the probability that none of the ob-
served messages indicate activity: P

`

et
ij |λ, m1

ij , . . . , m
k
ij

´

=

1 −
Q

k

`

1 − P
`

et
ij |λ, mk

ij

´´

. To balance between short and
long term information, the exponential parameter λ was set
to 28 days. Additionally, we set β = .3 for the MLH, and
took 10,000 samples of Enron and 200 samples of Facebook
for the sampling BC. More detailed analysis of these param-
eters can be found in Pfeiffer and Neville (2011).

Local Trend Analysis

We analyze two key figures at Enron: Kenneth Lay and Jef-
fery Skilling. These two were central to the Enron scandal—
as first Lay, then Skilling, and then Lay again, assumed the
position of CEO. The first event we consider (marked by
a vertical red line in Fig. 1) is Dec. 13th 2000, when it
was announced that Skilling would assume the CEO posi-
tion at Enron, with Lay retiring but remaining as a chairman
(Marks ). In Figure 1, both the sampling method and the
MLH method identify a spike in BCR for Lay and Skilling
directly before the announcement. This is not surprising, as
presumably Skilling and Lay were informing the other exec-
utives about the transition that was about to be announced.
Following the transition, both probabilistic methods agree
that Skilling and Lay have lower centrality. The time slice
method (1.c) produces no change in Lay’s BCR, despite his
central role in the transition. Also, there are a few random
spikes in Skilling’s BCR, which illustrates the variance that
results from using the time slices. The aggregate model (1.d)
fails to reduce Skilling’s BCR to the expected levels follow-
ing the announcement—although it is still fairly early in the
time window, the aggregate method is unable to track current
events based on its unioning of all past transactions.



05/11/99 03/07/00 12/13/00 09/21/01 07/05/02
0

0.3

0.6

En
ro

n 
C

C

Date

 

 

Aggregate Slice Sampling ML

(a)

05/11/99 03/07/00 12/13/00 09/21/01 07/05/02
0

1

2

3

4

5

6

7

En
ro

n 
Pa

th
 L

en
gt

h

Date

 

 

Aggregate Slice Sampling ML

(b)

03/08 06/08 09/08 12/08 03/09
0

0.1

0.2

Fa
ce

bo
ok

 C
C

Date

 

 

Aggregate Slice Sampling ML

(c)

03/08 06/08 09/08 12/08 03/09
0

5

10

15

Fa
ce

bo
ok

 P
at

h 
Le

ng
th

Date

 

 

Aggregate Slice Sampling ML

(d)

Figure 2: Average path lengths and clustering coefficients
for Enron (a,b) and Facebook (c,d).

The second event we consider (marked by the 2nd ver-
tical red line in Fig. 1) is Aug. 14th 2001, when, seven
months after initially taking the CEO position, Skilling re-
signed (Marks ). During the entirety of Skilling’s tenure, we
see that Lay’s BCR varies, but his BCR is not high enough
to be considered a ‘central’ node. Not surprisingly, Skilling
has a fairly high centrality during his time as CEO; both the
sampling method and MLH method capture this. Prior to the
announcement of Lay’s takeover as CEO, the slice method
continues to return low BCR for Lay, despite his previous
involvement with the first transition. Also, we note that the
sampling, MLH, and slice methods all agree that after Lay’s
initial spike from the Skilling resignation, he returns to a less
central role, which the aggregate method misses. In general,
the sampling method BCRs mirror those of the slice method,
albeit with less variance. However, the sampling results are
not as smooth as the MLH method, which indicates the util-
ity of considering most probable paths.

Global Trend Analysis

In Figure 2, we report average path lengths and average clus-
tering coefficient computed with each of the four methods:
MLH, sampling, aggregate, and slice. These are calculated
for each dataset throughout the available time window. We
use these results to investigate changes in the global statistics
in the network and to understand what, if any, changes oc-
cur with respect to the structure of the network. Figures 2.a,c
shows the clustering coefficients. The calculations from the
aggregate graph significantly overestimates the amount of
current clustering in the graph, while the slice method is
highly variable, especially for Enron. In general, the two
probabilistic measures fall in between the extremes, balanc-
ing the effects of recent data and decreasing the long term
effect of past information, with the MLH performing simi-
larly to the sampled clustering coefficient. In Figures 2.b,d,
we examine the shrinking diameter of these small world net-
works (Leskovec, Kleinberg, and Faloutsos 2005). Here, the
aggregate calculation underestimates the average path length
at any current point in time. We can see that the most proba-
ble paths closely follows the sampling results, with both ly-
ing between the slice and aggregate measures while avoiding
the variability of the slice method.

Conclusions

In this paper we investigated the problem of calculating cen-
trality and clustering in networks with edge uncertainty. We
introduced sampling-based measures for average shortest
path and betweenness centrality, as well as measures based
on most probable paths, which are more intuitive for cap-
turing network flow. We outlined exact methods to com-
pute most probable paths (and by extension, most proba-
ble betweenness centrality), and incorporated a transmission
probability to capture the notion of influence across uncer-
tain paths. In addition, we outlined a probabilistic version
of clustering coefficient and gave a first order Taylor ex-
pansion approximation for computation. We analyzed our
proposed methods using time evolving networks from En-
ron and Facebook. We demonstrated the limitations of us-
ing either an aggregate graph representation or a slice-based
representation in networks with uncertainty due to evolution
over time, namely that the aggregate approach fails to react
to changes in network structure and that the slice approach
exhibits extreme variability due to temporal noise. The re-
sults provide empirical evidence to illustrates the utility of
the probabilistic sampling and MLH-based social network
measures. In particular, the centrality rankings for the Enron
employees match our intuitions based on knowledge of the
Enron timeline.
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