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ABSTRACT
Traditionally, graph centrality measures such as between-
ness centrality are applied to discrete, static graphs, where
binary edges represent the ‘presence’ or ‘absence’ of a rela-
tionship. However, when considering the evolution of net-
works over time, it is more natural to consider interactions at
particular timesteps as observational evidence of the latent
(i.e., hidden) relationships among entities. In this formu-
lation, there is inherent uncertainty about the strength of
the underlying relationships and/or whether they are still
active at a particular point in time. For example, if we ob-
serve an email communication between two people at time
t, that indicates they have an active relationship at t, but
at time t + k we are less certain the relationship still holds.
In this work, we develop a framework to capture this un-
certainty, centered around the notion of probabilistic paths.
In order to model the effect of relationship uncertainty on
network connectivity and its change over time, we formu-
late a measure of centrality based on most probable paths of
communication, rather than shortest paths. In addition to
the notion of the relationship strength, we also incorporate
uncertainty with regard to the transmission of information
using a binomial prior. We show that shortest paths in a
unweighted, discrete graph can be formulated using proba-
bilistic paths with a prior and we develop an algorithm to
compute the most likely paths in O

`
|V ||E| + |V |2 log |V |

´
.

We demonstrate the effectiveness of our approach by com-
puting probabilistic betweenness centrality over time in the
the Enron email dataset.
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1. INTRODUCTION
An important concept in the study of networks and graphs

is to identify the most important (i.e., central) nodes in the
network. These central nodes are believed to facilitate the
flow of information through a network, and finding them can
have implications in fields ranging from viral marketing to
modeling traffic in a city.

To date, much of social network research has focused on
modeling discrete graphs, where edges represent the ‘pres-
ence’ or ‘absence’ of relationships. In many cases this is
a reasonable choice of representation: a road between two
cities exists, a power line connects a house to a power plant,
and hyperlinks connect pages on the Web. However in other
networks, for example time evolving social and communica-
tion networks, this discrete notion of edges may no longer be
appropriate. In these types of networks, relationships can
change over time—for example, strangers become friends
while close friends drift apart.

When analyzing evolving networks, an obvious approach
is to compute centrality by applying traditional (static) mea-
sures to the aggregate network, where edges accumulate over
time (i.e., edge (i, j) is included if there has ever been a link
between i and j). To compute betweenness centrality for a
particular node the history of all edges is used to calculate
the number of shortest paths in the graph that traverse the
selected node. However, when there is uncertainty about the
presence or ‘activity’ of a relationship at a particular point
in time, it is important to measure the change in centrality
over time, rather than basing measures of connectivity on
links that are weak, outdated, or no longer active. Recent
research on temporal centrality measures [14, 8] has used
discretized timesteps to represent evolving networks, by di-
viding time into segments where a message occurring during
a segment is observed and others are ignored. However, this
approach can be problematic due to the inherent discrepan-
cies and irregularity of messages (e.g., [8] introduces a ‘jitter’
parameter solely to overcome windowing effects).

In this work, we contend that probabilistic graphs are a
more natural representation for temporally-evolving com-
munication graphs. With this type of representation, we
can model the probability of a friendship being active, based
on the observed history of communication between the two
nodes. Probabilistic graphs can also represent the latent
(i.e., hidden) relationship strength among nodes, which has
been investigated recently [15, 5]. This work has focused on
predicting tie strength in online social networks using the
characteristics of users and the history of interactions be-
tween them, resulting in estimated relationship weights that



vary between 0 (i.e., ‘absent’) and 1 (i.e., ‘present’). Despite
the inherent uncertainty in relationship presence, activity,
and/or strength that is natural in many social network do-
mains, there is no general framework to incorporate this
uncertainty into network analysis tools. Here, we develop a
notion of probabilistic paths in uncertain networks, and use
it as a foundation for computing probabilistic betweenness
centrality in networks evolving over time.

Initially, we compute probabilistic betweenness centrali-
ties by sampling graphs with estimated relationship strengths
for a particular time t, then average the betweenness central-
ity rankings over the set of samples. We show that it takes
relatively few samples to calculate a reasonable estimate of
betweenness centrality.

Next, we develop an exact calculation of betweenness cen-
trality for probabilistic networks, based on the notion of
most probable paths. To motivate this approach, we note
that conventional betweenness centrality uses shortest paths
as an indication of how quickly information can potentially
flow in the network. When adopting a probabilistic view
of the network, information flowing across paths with fewer
nodes is less important than whether the information is suc-
cessfully transmitted. In this case, central nodes should cor-
respond to nodes that have high probability of transferring
information throughout the graph, regardless of path length.
To encode this notion, we consider probabilistic paths and
develop an algorithm for finding the most probable paths in
our network. We note that our formulation, which mod-
els the probability of the spread of information across the
graph, is consistent with the finding in [10], which identi-
fied that constricting and relaxing the flow along the edges
in the network was necessary to model the true patterns of
information in an evolving communication graph.

In addition, we note that current centrality measures,
which focus on shortest paths, implicitly assume that a node
is guaranteed to pass all available information to its neigh-
bors [14, 7]. Intuitively, this assumption is unlikely to hold in
social networks; people rarely update friends and coworkers
about every aspect of their personal life. A similar argument
applies to disease transmission in networks, where models of
diffusion incorporate the likelihood of contagion into calcu-
lations of flow and spread. Consequently, the likelihood of
transmission should be incorporated into our calculations of
node centrality. To address this, we formulate a prior that
accounts for the uncertainty associated with transmission of
information along edges, and incorporate it into our central-
ity rankings. We note how the notion of transmission uncer-
tainty along probable paths incorporates the naturally desir-
able qualities of (certain) shortest paths—longer paths are
typically less likely to deliver information across the graph.
We show that on discrete graphs our formulation of handi-
capping longer probabilistic paths with a prior is equivalent
to the shortest path formulation commonly used.

Our proposed centrality methods have fairly good run-
times – the sampling formulation takes O (m · |V | |E|), where
m is the number of samples taken, and we show that rela-
tively few samples are needed to obtain a good estimate.
Both most probable paths and most probable handicapped
paths can be computed in O

`
|V | |E| + |V |2 |E| log |V |

´
, with

modified versions of Dijkstra’s algorithm [3] for most prob-
able paths, and Brandes’ algorithm [1] for betweenness cen-

trality.1

Within the proposed framework, we investigate the cen-
trality of individuals over time in the Enron email dataset.
Our analysis shows that our probabilistic formulation offers
the following advantages:

• Smoother transitions in centrality ranking, when com-
pared to centrality calculated on discretized time slices.

• More accurate characterization of temporal centrality,
when compared to centrality calculated on the aggre-
gate graph.

The remainder of the paper is as follows: related work is
described in Section 2, probabilistic graphs and paths are in
Section 3. Section 4 outlines the sampling method, as well as
the notion of most probable paths. In Section 5 we analyze
the Enron email dataset, and in Section 6 we conclude.

2. RELATED WORK
Determining the centralities of nodes in networks has been

extensively studied, with metrics ranging from simple rank-
ings based on the degree of the nodes, to more complicated
methods which involve computing eigenvectors [2]. Despite
the extensive research into centrality measures, relatively lit-
tle has been done in finding the centrality of time-evolving
networks, with the notable exceptions being [14] and [7]. [14]
formulates the problem of finding the most central nodes
throughout time, by using the notion of a temporal graph.
To create this temporal graph, the edges are collapsed by
day, and shortest paths are found through the days. How-
ever, this makes an assumption that the most important
nodes in a network remain the most important throughout
time; a notion which is unlikely to hold as we are able to
examine networks as they evolve throughout more extensive
time periods. In fact, in our analysis we can find specific peo-
ple who are only important with key events in time, rather
than being the most important throughout time. The vector
clock method proposed by [7] formulates this notion by de-
veloping a temporal notion of important edges based on an
edge’s ability to convey information directly between nodes
faster than bypassing along alternate paths. However, this
does not lead us to be able to determine which set of nodes
and edges are the most ‘central’ in the network.

When developing probabilistic paths, we note that the
notion of probabilistic graphs have been studied previously,
notably by [4], [6] and [11]. [4] showed how when we have
graphs with probability distributions of weights for each
edge, we can use Monte Carlo to sample to determine the
shortest path probabilities between the edges. [6] then ex-
tends on this to find the paths most probable to complete
within a certain time constraint. Determining the most
probable shortest paths when the edges have a probability
of existence is closely related to determining the most prob-
able shortest paths when we have a distribution of weights,
and Monte Carlo can be used for both [11, 4]. Interestingly,
[11] chooses to weight the shortest path distribution based
on the probability of the sampled graph’s existence, rather
than keeping in line with typical sampling techniques. We
choose to follow the formulation by [4], where every sampled
graph gets equal weight. We note that our formulation for

1This is the same complexity as computing betweenness cen-
trality on positively weighted graphs [1].



most likely probable paths takes advantage of the fact that
our graphs are unweighted ; any network which has weights
and probabilities would need a sampling approach.

3. PROBABILISTIC GRAPHS
Generally, we define a graph G = 〈V, E〉, where V is a col-

lection of nodes and E is our collection of edges, or relation-
ships, between the nodes. Many times, weights are assigned
along the edges, so an edge eij which connects node vi and
vj would be assigned a weight w (eij). In social networks,
we rarely have weights assigned to an edge, rather, people
communicate with each other through messages, which we
can use to indicate the probability of an active relationship
between the two nodes [15]. We see that we now have two
separate and distinct notions; edges and messages. We de-
fine an edge eij to be the probabilistic connection between
two nodes, indicating whether the nodes have an active re-
lationship. This is in contrast to messages; a message mij

is an concrete and directly measurable communication be-
tween two nodes vi to vj . An edge is inherently unobserv-
able, we can estimate the probability of an active relation-
ship between two nodes, but this has to be inferred from
the characteristics of the nodes and messages sent between
them.

Furthermore, both have different interpretations with re-
spect to time. Messages between nodes occur at a specific
time, which we denote as t

`
mk

ij

´
. A message can indicate

an active relationship at the current time t (now), but it
itself does not occur at t (now). This is in contrast with
edges, the relationship strength indicated by an edge can be
asked for at any time; it is not fixed. We denote this to

be e
t(now)
ij , and we frequently simplify this to be et

ij . We

can then denote P
`
et

ij

´
to be the probability of an edge at

a specific time. Probabilistic paths are not dependent on
using time, so we can refer to this as P (eij) when time is
not a necessary factor.

3.1 Probabilistic Paths
A path is defined to be a sequence of vertices such that

from each vertex to the next there exists an edge; we define
V (ρij) and E (ρij) to be the vertices and edges that consti-
tute a path ρij , which denotes the path between two nodes
vi and vj . Extending paths to the probabilistic framework,
we make the assumption that the probability of an edge ex-
isting is independent of all other edges. We can now define
the probability of a path over a probabilistic graph to be
the multiplication of the probabilities of the edges along the
path. Formally,

P (ρij) =
Y

ek,k+1∈E(ρij)

P (ek,k+1) (1)

It is apparent that this notation applies to discrete paths
as well as probabilistic paths, which is discussed in detail in
Section 4.4. We can see that if we were to able to calcu-
late the distribution of graphs defined by the probabilities
on the edges, ρij would exist with probability P (ρij); the
probability that all edges exist simultaneously.

4. PROBABILISTIC GRAPH CENTRALITY
As with discrete graphs, frequently we are asked to iden-

tify the nodes which are central to facilitating information

flow through the graph, and in a time evolving graph, we
would like a way to compute the most central nodes at a
specific juncture as well. It is clear that the usage of the
probabilities as weights is incorrect, as [11] notes. Instead,
we create two alternate methods based around the notion of
probabilistic paths: sampling and most probable paths.

4.1 Sampling for Probabilistic Centrality
Let G be the given probabilistic graph, which defines a dis-

tribution of discrete, unweighted graphs. Each unweighted
graph G ∈ G has a betweenness centrality ranking for every
node vi, which we denote BCRi (G) . Next, BCRi (G) is
defined as being a random variable for the betweenness cen-
trality of a node vi over the distribution of graphs G. The
expectation for the random variable BCRi (G) is given by:

E [BCRi (G)] =
X

G∈G

BCRi (G) · P (G) (2)

Typically, the distribution of the graphs G ∈ G is in-
tractable to compute directly, so we sample to approximate
our expectation. Given that we draw m sample graphs Ĝ in-
dependently from the distribution G, we get a uniform prob-
ability for the sample graphs. We can now approximate the
expectation for the betweenness centralities:

E [BCRi (G)] ≃
1

m

X

Ĝ∈G

BCRi

“
Ĝ
”

Due to the fact that each of our sampled graphs are un-
weighted, the computation of the betweenness centrality for
each is O (|V | |E|), for an overall cost of O (m · |V | |E|). This
is more expensive than typical sampling costs; however, we
need to draw relatively few samples to get a good estimate
of the betweenness centrality (section 4). Finally, we note
that this sampling method is applicable for networks that
have weights, for the cost of O

`
m ·

`
|V | |E| + |V |2 log |V |

´´
.

4.2 Most Probable Path
Using the definition of probabilistic paths, we are now in-

terested in the notion of the most probable path. That is,
if vertex vi sends out a piece of information, what path is
the most likely to deliver the information to vertex vj? If
we have accurate estimates of relationship strength, and as-
sume that all known information is transmitted from a node
to its neighbors whenever it sees them, it is clear that the
most probable path tells us which path is the most probable
for delivering the information from vi to vj . It is impor-
tant to note that, to our knowledge, all previous research in
temporal paths also makes this implicit assumption of trans-
mitting the information perfectly from one node to the next
[7, 14].

A key advantage to using the most probable path for-
mulation described is that we can precisely calculate all of
the most probable paths, between every vertex, in exactly
O
`
|V | |E| + |V |2 log |V |

´
. Algorithm 1 outlines how to do

this; we modify Dijkstra’s shortest path algorithm [3] by
selecting the most likely unvisited path, rather than the
shortest unvisited path. Additionally, we can modify Bran-
des’ algorithm [1] to start with the path that has the lowest
probability of occurrence to be the one to backtrack from,
allowing for computation of the betweenness centrality in
O
`
|V | |E| + |V |2 log |V |

´
as well.



Algorithm 1 ML Paths

Input: Index for some node i
Output: Probability of ρij for all vj

Backpointers for recreation of ML Paths

1: array path probs = [0, . . . , 0]
2: array visited = [false, . . . , false]
3: array previous = [−1, . . . ,−1]
4: path probs [i] = 1
5: while there are unvisited nodes do

6: Set cur to max in path probs and be unvisited
7: for all o who are unvisited neighbors of cur, do

8: if path probs [cur] · ecur,o > path probs [o] then

9: // Update the most probable path
10: path probs [o] = path probs [cur] · ecur,o

11: previous [o] = cur
12: end if

13: end for

14: visited [cur] = false
15: end while

16: return previous, path probs

4.3 Transmission Uncertainty in Longer Paths
As stated previously, both the most probable path formu-

lation and other temporal formulations of centrality, make
the implicit assumption that all information is transmitted
across an edge. However, this may be a poor assumption,
since in a social network, people rarely transfer all informa-
tion about themselves to their contacts. Consider the case
where there is a chain of 10 people all with high relationship
strengths, and a different path of length 2 where the relation-
ship strength between the people involved is moderate. We
would expect that information is more likely to flow along
the shorter path, solely because it is unlikely that a mes-
sage would make it through the entire length of the longer
path. What needs to be accounted for is the probability of
transmission, which incorporates the probability of a person
conveying information to a friend into the path probability.
This gives us additional insight into why shortest paths are
important; there is higher likelihood that the information
will be transmitted if it goes through fewer people.

The Binomial Distribution . For every step in a particular
path, we can assign a probability β of success; or a proba-
bility that information is transmitted across an edge and is
received by the neighboring node. If we denote l to be the
number of steps in our path, and s to be the number of suc-
cessful transmissions along the path, our formulation for the
binomial distribution becomes:

Bin (s|l, β) =

 
l

s

!
βs (1 − β)l−s (3)

where: 0 < β < 1

We see that when viewing probabilistic paths, we are only
concerned with the single case where it always succeeds. As
such, our prior simplifies to be:

SBin (s|β) = βs

Using the binomial distribution models our expected prob-
ability of information spread in an intuitive way, giving us

Algorithm 2 ML Handicapped Paths

Input: Index for some node i
Output: Probability of ρij for all vj

Backpointers for recreation of ML Paths

1: array path probs = [0, . . . , 0]
2: array posterior probs = [0, . . . , 0]
3: array path length = [0, . . . , 0]
4: array visited = [false, . . . , false]
5: array previous = [−1, . . . ,−1]
6: path probs [i] = 1
7: while there are unvisited nodes do

8: Set cur to max in posterior probs and be unvisited
9: for all o who are unvisited neighbors of cur, do

10: p prob = path probs [cur] · ecur,o

11: p length = path length [cur] + 1
12: p post = p prob · SBin (p length|β)
13: if p post > posterior probs [o] then

14: // Update the most probable path
15: path probs [o] = p prob
16: path length [o] = p length
17: posterior probs [o] = p post
18: previous [o] = cur
19: end if

20: end for

21: visited [cur] = false
22: end while

23: return previous, path probs

a parameter β which we can adjust to fit our expectations
for the information spread in the graph. Note that setting
β = 1 leaves us with the original probabilistic paths nota-
tion, illustrating how the binomial is an extension of our
original formulation.

In addition to the advantage of incorporating transmis-
sion uncertainty into our paths, we note that the prior has
the effect of handicapping longer paths through the graph.
We can find correlation between shortest (certain) paths and
handicapped (uncertain) paths; however, we note that these
are not the same formulations. We believe that it is a nat-
ural cross between the discrete graph and the probabilistic
graphs; in the discrete graph shortest paths implicitly de-
crease uncertainty, just as our explicit modeling of trans-
mission uncertainty does here.

ML Handicapped Paths. Now that we have both the no-
tions of a probabilistic path, and an appropriate prior for
modeling the probability of information spreading along the
edges in the path, we can formulate the maximum likelihood
handicapped path between two nodes vi and vj to be:

ML (vi, vj) = max
ρij

[P (ρij) · SBin (L (ρij) |β)] (4)

where L (ρij) is the length of the path. In Algorithm 2 we
give the formulation for this, which requires keeping track of
the probability of a path separately from the posterior. Like
the most likely paths formulation, we can calculate both
the most likely handicapped paths and the corresponding
betweenness centrality in O

`
|V | |E| + |V |2 log |V |

´
.

4.4 Handicapped Paths and Shortest Paths
The formulation of ML Handicapped Paths has inherent



benefits, most notably with its direct connection to the pre-
viously well-studied notions of shortest paths and between-
ness centrality. In fact, we can view the discrete graph as
being a specific case of the probabilistic graph. To do this,
we define the probabilities for discrete edges to be:

P (eij) =

(
1 if an edge exists

0 if the edge does not exist
(5)

This is an intuitive extension; if an edge exists in a discrete
graph, than we know with probability 1 that it is there.
Likewise, if an edge is not present, than it almost surely will
never exist.

Theorem 1. Equivalent Paths

The set of probabilistic paths eP = {ρ|P (ρ) = 1} is pre-
cisely the same as the static paths P, on a discrete graph
with probabilities defined by Equation 5.

Proof. The base case is defined to be L (ρ) = 1. Since

∀ e ∈ E : P (e) = 1, these must also be in eP. For all edges
e′ not present in E, P (e′) = 0, so if an edge is not present

in E, than it is also not present in eP.

Set ρi to be the first path where ρi ∈ P ∧ ρi /∈ eP. Since

ρi is the first false case, we know ρi−1 ∈ P ∧ ρi−1 ∈ eP.
ei−1,i must be present in order for ρi ∈ P. The probability
of ei−1,i was defined to be 1, so P (ρi−1) · P (ei−1,i) = 1, so

ρi ∈ eP , a contradiction. So the proposition holds.

The opposite case, where ρi ∈ eP ∧ ρi /∈ P can be proved
using a similar proof.

Theorem 2. Shortest Paths and Handicapped Paths
The shortest path in the static graph for ρij ∈ P is the

same as the ML Handicapped Paths formulation, when we
choose 0 < β < 1.

Proof. Using Proposition 1, we know that the paths in
P from vi to vj are precisely the same as those found in
eP where P (ρij) > 0. Furthermore, because every P (eij)
is either 1 or 0, every case where P (ρij) > 0 is precisely
P (ρij) = 1. For the definition of shortest path in P, we
know that we have minimized L (ρij). Since the probability
of a path is always going to be 1 in this setting, the only
thing that can affect the posterior is the prior. Our prior is
defined in (4), with the assumption that 0 < β < 1. Since
we are multiplying β additional times for any path that is
longer than the shortest path, our posterior must be lower
for any path that is longer than the shortest path. As such,
both formulations produce the same shortest path.

Theorem 3. Equivalent Betweenness Centrality
The betweenness centrality using P can be equivalently cal-

culated with eP, where edge probabilities on the discrete graph
are defined by Equation 5

.

Proof. This follows directly from proposition 2; since we
have the same shortest paths, and they all have P (ρij) =
1.

In addition to the proofs for the connections between ML
Handicapped paths and shortest paths, we show the correct-
ness and time complexity for the ML Handicapped paths
algorithm.

Theorem 4. ML Paths Correctness
The ML Paths algorithm and ML Handicapped Paths al-

gorithm finds the maximum likelihood paths.

Proof. We note the step in Algorithm 1 where we choose
the maximum probability of unvisited nodes; say ρij . If we
were to choose another path which had a lower probability
(for instance, ρik), our formulation becomes ρ′

ij = ρik · ρkj .
Clearly, the maximum probability that ρkj can have is 1, so
the maximum of ρ′

ij = ρik. However, we know that ρik <
ρij ; therefore, ρ′

ij < ρij and is not optimal. This holds
as well for ML Handicapped Paths, where we now have an
additional β penalizer for the additional step.

Theorem 5. ML Paths Time Complexity
The ML Paths algorithm and ML Handicapped Paths can

be solved in O
`
|V | |E| + |V |2 log |V |

´
for all ρij.

Proof. [1] showed that we can compute betweenness cen-
trality in for weighted graphs in O

`
|V | |E| + |V |2 log |V |

´
.

Here, we choose the most probable paths, rather than the
shortest paths. As such, the computation cost does not
change.

5. EXPERIMENTS
For our analysis we use the Enron dataset compiled by

Shetty and Adibi [13]. In addition to the fact that this
dataset is time-evolving, it allows us to study the effects of
our centrality measures unlike other datasets, in the sense
that key events and central people have been well docu-
mented [9]. The dataset itself was originally posted by the
Federal Energy Regulatory Commission during its investi-
gation of Enron, and contained upwards of 800,000 emails
among 151 ex-employees of Enron; many of the emails have
since been deleted at the request of employees. The current
version contains 517,431 emails from 151 employees. We are
only interested in the emails that were sent from employee-
employee (or multiple employees), and exclude outside emails.

For comparison, we use four algorithms. First is the aggre-
gate method, which at a particular time examines the entire
graph that it has observed so far, or evaluating the stan-
dard betweenness centrality measure. Next, we take slices
of time, where we only consider the messages that occurred
within a selected time period before the time being evalu-
ated. Additionally, we evaluate both the ML handicap and
sampling methods defined earlier.

Time Slices. For the discretized time slices, we choose a
period of 14 days to be in each time slice in our evaluation.
Our intuition on why this is a good duration is that the
slice will contain two full work weeks. Since periods of email
flow in corporate settings are certainly dependent on what
days of the week that meetings are held, at least a week is
necessary, likewise, a month seems inherently too long to
capture changes as they occur.

Relationship Strength. In order to evaluate both the sam-
pling method and the most likely paths method, we need a
measure of relationship strength for our model. Although
any notion of relationship strength can be substituted at
this step; we investigate the performance of the framework
by defining a relatively simple relationship strength. First,
define the exponential decay for a particular message to be:



Exp (mij |t(now)) = exp


1

λ
(t (now) − t (mij))

ff

This exponential decay for a single message indicates the
probability of having an active relationship between nodes
vi and vj at the current timestep, based on message mij .
Formally, we get:

P
`
et

ij |mij

´
= Exp (mij |t(now))

P
`
ēt

ij |mij

´
= (1 − Exp (mij |t (now)))

where P
`
et

ij |mij

´
indicates an active relationship at t (now)

given a message mij , and P
`
ēt

ij |mij

´
indicates the proba-

bility of not having an active relationship at t (now). Next,
rather than only considering a single message mij , we can
consider all of the previous messages between nodes vi and
vj in our formulations. Specifically, if any of the previ-
ous messages indicate an active relationship, than our edge
would be considered to have an active relationship. In or-
der to not have an active relationship, all of the previous
messages would indicate not having an active relationship.
Formally,

P
“
ēt

ij |m
1
ij , . . . , m

k
ij

”
=
Y

k

“
1 − Exp

“
mk

ij |t (now)
””

P
“
et

ij |m
1
ij , . . . , m

k
ij

”
= 1 − P

“
ēt

ij |m
1
ij , . . . , m

k
ij

”

where we have k messages occurring prior to time t (now).

5.1 Parameter Setting
Setting λ. In order to set the scaling parameter λ for re-
lationship strength, we took each employee and measured
the correlation between the sampling method rankings and
time slice rankings for that particular employee. The cor-
relations between the rankings for all 151 employees were
then averaged. An identical method was used to measure
the correlation between the sampling method and the ag-
gregate method, and the results are shown in Figure 1.a.
We note that the left side of Figure 1.a indicates the situ-
ation where we have an extremely small scaling parameter
λ; this is the situation where we ‘forget’ a message quickly.
The right side similarly corresponds to the case where a mes-
sage is given weight for long periods of time. As expected,
small values of λ clearly shows high correlations with the
‘slice’ rankings, while larger values approach a correlation
of 1 with the aggregate. Notice that as we get smaller and
smaller λ, the correlation with the slice rankings decreases;
this is the case where our λ is much smaller than our slice
duration, and the slices can no longer keep track of the most
immediate changes. We note that when λ = 14, identical to
the time slice, it has much higher correlation with the ag-
gregate than the slice method does at that time. In fact, we
have to choose λ ≈ 3.5 to reach the point where it has lower
correlation with the aggregate than the slice method of 14
days, because the slice method has such high variability be-
tween slices. We want to be able to balance between short
term change and long term trends by setting λ to a ‘mid-
dle ground’. We note that we achieve this balance around
λ = 28, where the two cross.
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Figure 1: Correlation between the Sampling Method and the
Aggregate/Slice Methods for varying values of λ ((a) and
(b)). Number of samples and correlation with the 10,000
samples (c).

Number of samples. First, we note that [11] found that
relatively few samples are needed to compute a decent esti-
mate of the shortest paths in the graph, based on the Ho-
effding Inequality. We note that our betweenness centrality
rankings are based on shortest paths, so they also need rela-
tively few samples in order to get a good estimate. We show
this empirically, using the Enron Dataset (discussed in sec-
tion 4) which contains 151 nodes. Figure 1c demonstrates
the relative accuracy of the rankings; we see that with just a
handful of samples, the rankings are highly correlated with
the rankings produced by taking 10,000 samples. Given that
some nodes have no change in betweenness centrality, this
overestimates the correctness to some extent, but is a rea-
sonable measure. As expected, more samples gives a better
estimation, so for setting λ, we used 200 samples, and for
further analysis we used the full 10,000 sample set.

Setting β. Here, we note the need for choosing a transmis-
sion parameter β, for use with the ML Handicapped Paths
(MLH) algorithm. For this, we have already set λ = 28
for both the sampling and the MLH algorithms; the cor-
relations between the MLH algorithm and the alternative
algorithms are shown in Figure 1.a. As expected, no matter
what value we choose for β our correlation is higher with the
sampling method than either the aggregate or slice meth-
ods. This is partly due to our choice of λ; we also found
that a smaller value of λ resulted in approximately even
correlation between the slice and MLH methods against the
sampling method. Likewise, a large λ results in high cor-
relation between aggregate/sampling/MLH methods. Both
of the probabilistic approaches allow for balance between
short-term change and long-term information. For our sub-
sequent evaluations, we set β = .3, which is approximately
where peak correlation happened.
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Figure 2: Correlations of the Rankings for the time segment

ending at August 24th, 2001

Correlations on August 14th, 2001. In order to illustrate
the differences between the four methods, we analyze their
respective rankings at a particular point in time: August
14th, 2001. This was a particularly tumultuous time for En-
ron (see below in Section 5.2) and we can use it to see how
closely the rankings between methods match (shown in Fig-
ure 2). The x-axis indicates the rankings for one of the meth-
ods, from lowest rankings (left) to highest (right), while the
y-axis indicates the rankings for a different method, again
from lowest rankings (bottom) to highest (top). The green
line from bottom-left to top-right indicates the ’perfect’ cor-
relation; if the two measures are identical, all of the red +’s
will lie directly on top of it, the farther we stray from the
green line the less correlated the methods.

We can see in Figure 2.a that the MLH method closely ap-
proximates the sampling method, with only a few people’s
rankings varying from the diagonal, while Figure 2.b indi-
cates that the slice method only somewhat approximates it.
We can see that the slice method follows the sample method
to some extent; however, a large number of nodes with high
centrality from the sampling method are missed by the slice
method. This highlights the problems with using the slice
method; nodes with high centralities are liable to be over-
looked due to the imprecision of discretized time. Addition-
ally, we note that August 14th, 2001 is relatively late in our
dataset. The aggregate method has little correlation with
the slice method and the sampling method, giving weight
to our intuition that the aggregate is incapable of tracking
current events in the network.

5.2 Lay and Skilling
As stated previously, the Enron dataset is unique and use-

ful for us in the sense that we know the background of the
timeline, and can therefore investigate the correctness of cen-
trality measures. In this case, we choose to analyze two key
figures at Enron: Kenneth Lay and Jeffery Skilling. Both
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Figure 3: Time rankings of Lay and Skilling. Red lines
indicate Skilling’s CEO announcement, takeover and resig-
nation.

were key figures in the Enron scandal and, more importantly,
Lay and Skilling traded off being CEO of the company: Lay
was CEO first, then handed it off to Skilling. Several months
later, Skilling resigned as CEO, relinquishing control back
to Lay. We can analyze the centrality rankings for Lay and
Skilling during these transition periods, as we expect large
changes to happen to both of them. We note that dur-
ing routine moments in time, Lay has a relatively low cen-
trality, indicating that a secretary or someone is handling
generic communication with other people. However, dur-
ing the eventful transition periods, Lay has much higher
centrality, indicating his desire to communicate with other
executives directly.

December 13th, 2000. On December 13th it was announced
that Skilling would assume the CEO position at Enron, with
Lay retiring but remaining as a chairman [9]. We note that
in Figure 3.a, both the sampling method and the handi-
cap method identify a spike in activity for both Lay and
Skilling directly before the announcement. This is not sur-
prising; presumably Skilling and Lay were informing the
other executives about the transition that was about to be
announced. Additionally, after the announcement the sam-
pling and handicap measures have Skilling and Lay’s cen-
tralities decrease. This is due to both the holiday season
and Skilling’s trip to Houston [9], where he discussed with
analysts the ’outstanding’ fiscal shape of Enron.

We note that the time slice method makes no change in
Lay’s activity, despite his central role in the transition (3.c).
Additionally, Skilling is given a few random spikes of ac-
tivity, showcasing the unevenness of using the time slices.
The aggregate model seems to do a good job picking up
Lay’s increased activity, but fails to reduce his activity to
the expected levels following the announcement (3.d). This
is fairly early in the temporal evolution and we are already



seeing the aggregate’s inability to track current events. We
also note the MLH is somewhat smoother than the sampling
method, indicating the promise of using the most probable
paths, rather than the probabilistic shortest paths.

February, 2001. During February, 2001, Skilling made the
transition to CEO of Enron and Lay retired. We note fol-
lowing this date, Skilling’s centrality increased. This can
be attributed to either returning to his previous level of ac-
tivity (after the Houston meetings), his promotion to CEO,
or both. Additionally, Lay is now retired as CEO, so a
fairly low centrality is not surprising. Both the sampling
method and the handicap methods capture this; MLH has
him return to an extremely low centrality, while sampling
has him moving around somewhat, and is still somewhat
rougher than MLH.

For this time period, the slice method hardly notices Skilling’s
position as CEO, and fails to give any notice to Lay, even
though he is clearly a central figure in transition. Likewise,
the aggregate has Skilling’s centrality dropping during his
CEO time, which is rather unlikely to occur.

August 14th, 2001. Seven months after initially taking the
CEO position, Skilling approached Lay about resigning ([9]).
During the entirety of Skilling’s tenure, we see that Lay has
a slight effect on the sample rankings, but is not what we
would consider a ‘central’ node. Not surprisingly, Skilling
has a fairly high centrality during his time as CEO; both
the sampling method and handicap method capture this.
After Skilling’s resignation, note that all of the methods do
manage to capture Lay’s sudden increase in centrality.

Prior to the announcement of Lay’s takeover as CEO, the
slice method still had no weight on him, despite his previous
involvement with the first transition. Additionally, we note
that the sampling, handicap, and slice methods all agree
that after Lay’s initial spike from the Skilling resignation,
he resumes having a lower centrality. The aggregate graph
is simply unable to capture this change, and leaves Lay near
the top of the centrality rankings.

5.3 Kitchen and Lavorato
Louise Kitchen and John Lavorato were executives [13]

for Enron Americas, which was the wholesale trading sec-
tion of Enron [12]. They are notable because of the ex-
traordinarily high bonuses they received as Enron was be-
ing investigated, and were also found to have a high tempo-
ral betweenness centrality using the method defined by [14].
We can see in Figure 4 the rankings of Kitchen and Lavo-
rato, and can key in on the benefit of using the probabilistic
framework’s ability to key in on centralities at specific times,
rather than using the temporal definition through time pro-
posed by [14]. We see that while Lavorato might have got-
ten a large bonus, he is only important during Skilling’s
tenure as CEO; his centrality drops noticeably otherwise.
On the other hand, Kitchen had extremely high rankings
throughout. This suggests that Skilling and Lavorato were
extremely close, and Lavorato was therefore much more im-
portant when Skilling was running Enron. Our formulation
of the probabilistic paths framework allows for this addi-
tional insight into the dynamic structure of the network.
Once, we see that the probabilistic shortest paths is some-
what rougher than the most probable paths formulation,
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Figure 4: Time rankings of Kitchen and Lavorato.

specifically for Louise Kitchen.
Again, we see the inherent problems with using the slice or

aggregate methods. The slice method is extremely finicky
with regard to Kitchen, oscillating between an extremely
high ranking and an extremely low ranking, while the ag-
gregate method has Lavorato hitting high centrality at the
correct time, but does not recognize the lack of importance
of Lavorato after Skilling’s departure.

6. CONCLUSIONS
In this paper we investigated the problem of calculating

centrality in a time evolving network. We demonstrated
the aggregate graph’s inability to capture changes as they
occurred, and the extreme variability of discretizing time.
Our sampling approach - based on probabilistic graphs -
allows for the ability to observe both the immediate changes
as they occur, while incorporating smoothness through time.
The sampling approach allows for the use of positive weights
on our edges, making it extendable to applications beyond
social networks.

In addition, we introduced the ML Paths and ML Hand-
icapped Paths formulations, which have significantly higher
correlation to the sampled graph than either the discretized
time slices or the aggregate graph, and show additional smooth-
ness not present in our sampling method. We proved that
the shortest paths algorithm on unweighted, discrete graphs
can be equated to be a specialized instance of the ML Hand-
icapped Paths formulation.

We provided empirical evidence on the Enron dataset show-
ing the sampling and MLH’s intuitive centrality rankings
for the Enron employees. Both the sampling and handicap
formulations are inherently smoother than the discretized
time slices, and allow for representing changes over time,
unlike the aggregate method. We see the MLH formulation
is smoother than the sampling method, indicating that the
most probable paths through the graph are more important
than the shortest. Finally, we note that our experiments



used a relatively simple estimate of relationship strength.
Future work can be done on exploring the impact of different
measures of relationship strength. a more elegant approach
to model relationship strength at various timesteps.
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