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ABSTRACT
Due to the widespread interest in networks as a representa-
tion to investigate the properties of complex systems, there
has been a great deal of interest in generative models of
graph structure that can capture the properties of networks
observed in the real world. Recent models have focused pri-
marily on accurate characterization of sparse networks with
skewed degree distributions, short path lengths, and local
clustering. While assortativity—degree correlation among
linked nodes—is used as a measure to both describe and
evaluate connectivity patterns in networks, there has been
little effort to explicitly incorporate patterns of assortativ-
ity into model representations. This is because many graph
models are edge-based (modeling whether a link should be
placed between a pair of nodes i and j) and assortativity
is a second-order characteristic that depends on the global
properties of the graph (i.e., the final degree of i and j).
As such, it is difficult to incorporate direct optimization of
assortativity into edge-based generative models.

One exception is the BTER method [5], which generates
graphs with positive assortativity (e.g., high degree nodes
link to each other). However, BTER does not directly es-
timate assortativity and also is not applicable for networks
with negative assortativity (e.g, high degree nodes link pri-
marily to low degree nodes). In this work, we present a novel
approach to directly model observed assortativity (both pos-
itive and negative) via accept-reject sampling. Our key ob-
servation is to use a coarse approximation of the observed
joint degree distribution and modify the likelihood that two
nodes i, j should link based on the output properties of the
original model. We implement our approach as an augmen-
tation of Chung-Lu models and refer to it as Binning Chung
Lu (BCL). We apply our method to six network datasets and
show that it captures assortativity significantly more accu-
rately than other methods while maintaining other graph
properties of the original CL models. Also, our BCL ap-
proach is efficient (linear in the number of observed edges),
thus it scales easily to large networks.
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1. INTRODUCTION
Due to the widespread interest in networks as a repre-

sentation to investigate the properties of complex systems,
there has been a great deal of interest in generative models
of graph structure that can capture the properties of net-
works observed in the real world. More specifically, scalable
models of social and information networks have facilitated
the study of the structure of the Internet and World Wide
Web, and provided foundational support for the develop-
ment of algorithms and systems deployed in those online
environments.

Research on generative models of graphs has focused pri-
marily on accurate characterization of sparse networks with
skewed degree distributions, short path lengths, and local
clustering. Recent models include the Chung-Lu Graph
Model (CL) [2] and Transivitive Chung Lu (TCL) [9]. CL
will, in expectation, match the degree distribution in the
original graph, and it has scalable methods to learn and
generate graphs with hundreds of thousands of nodes and
millions of edges. TCL is an extension of CL, which at-
tempts to model clustering via triangle closures. Sometimes
the TCL generation method chooses to add an edge based
on the CL process, while other times it chooses to follow a
transitive edge and then close a triangle. The probability
of using the CL process versus the transitive process is con-
trolled by a single parameter, which can be learned quickly
on large networks with millions of edges.

While assortativity—degree correlation among linked
nodes—is often used as a measure to both describe and
evaluate connectivity patterns in networks (see [8, 19, 12]),
there has been little effort to explicitly incorporate patterns
of assortativity into model representations. This is because
many graph models are edge-based (modeling whether a link
should be placed between a pair of nodes i and j) and as-
sortativity is a second-order characteristic that depends on
the global properties of the graph (i.e., the final degree of
i and j). As such, it is difficult to incorporate direct opti-
mization of assortativity into edge-based generative models.
Specifically, CL and TCL do not model assortativity, which
is reflected in networks sampled from their distributions.

Two existing models that produce networks with assorta-
tivity are the Block Two-Level Erdos-Renyi (BTER) graph
model [5], and the Joint Degree Distribution (JDD) model
[16]. The BTER model [5] groups vertices with similar
degrees into blocks of vertices: vertices within the same
block have higher probability of linking, while vertices across
blocks have significantly lower probability. Thus, the net-
works produced have a high amount of clustering and posi-



tive assortativity. Further, increasing the amount of assorta-
tivity impacts the amount of clustering (and vice versa). As
a result, BTER cannot model networks where the assortativ-
ity is independent of the clustering. This includes negative
assortativity (i.e., high degree nodes link primarily to low de-
gree nodes), which occurs in many real-world networks. The
recent JDD model [16] estimates a joint distribution over the
degrees of incident nodes, and since assortativity is simply a
function of the joint degree distribution, JDD can model it.
However, the JDD model does not have a scalable sampling
method, since its mixing time is currently quadratic in the
number of nodes. Also, the JDD does not model other more
global network characteristics such as clustering.

In this work, we present a novel approach to augment
edge-based statistical models of graphs to direct optimize ob-
served assortativity (both positive and negative) via accept-
reject sampling. Our key observation is to use a coarse ap-
proximation of the observed joint degree distribution and
modify the likelihood that two nodes i, j should link based
on the output properties of the original model. Specifically,
to generate graphs that accurately reflect a target level of
assortativity, we enhance the Chung Lu model as follows.
We use a binning technique to estimate the joint degree dis-
tribution, where edges from the original graph are counted
in bins based on the degrees of the two incident nodes. We
then compute the output bin frequencies that occur when a
graph is sampled from a CL model. The difference between
the two determines the acceptance rates to use in a statistical
sampling process that modifies the likelihood of i, j pairs to
better match the target bin frequencies. We implement this
general approach to modeling assortativity for both CL and
TCL models and refer to it as Binning Chung Lu (BCL).

We apply our method to six network datasets and show
that it is able to accurately capture assortativity (signifi-
cantly better than the baseline methods) while maintaining
the other graph properties of the original models. Addition-
ally, the BCL approach is efficient (linear in the number of
observed edges), thus it scales to large networks. We will
demonstrate how BCL was able to learn and sample from a
large Patents dataset with 14 million edges.

Our contributions can be summarized as follows:

• Introduction of a coarse binning technique to capture
the joint degree distribution (rather than the scalar
measure of assortativity) during optimization.

• Development of an accept-reject sampling process to
augment existing edge-based generative models to cap-
ture observed assortativity in the input networks.

• Implementation of our binned sampling approach with
respect to two Chung Lu models.

• Empirical demonstration showing graphs generated with
our proposed method maintain the degree and cluster-
ing properties of the original models, while at the same
time accurately modeling assortativity (thus providing
significant gains over previous methods).

Section 2 outlines the notation used, discusses related
work, and introduces the Chung Lu model with its vari-
ants. Section 3 outlines our binning approach, which results
in approximately matching the assortativity coefficient. In
section 4, we analyze our experimental rsults and compare
to competing models. We conclude in section 5.

2. NOTATION AND BACKGROUND
Let a graph G = 〈V,E〉 define a set of vertices or nodes

V, with a corresponding set of edges E ⊂ V × V. Let us
denote the edges eij where eij = (vi, vj). Note that since
the graph is undirected, eij ∈ E if and only if eji ∈ E.

Let Di be the degree of node vi in the graph. Let M be
the total number of edges in the graph. Note that |E| = 2M
since each undirected edge corresponds to two elements in
E. We can refer to the number of nodes of each degree as
the degree distribution of the graph.

We will refer to three nodes mutually connected as a tri-
angle. Further we will define a path of length two in the
graph as a wedge. The local clustering coefficient is the ra-
tio of the number of triangles incident to a node compared
to the number of wedges centered on that node [18]. The
distribution of clustering coefficients of nodes is a structural
characteristic of a graph. Intuitively, high clustering coeffi-
cients are indicative of a graph where connected nodes have
many mutual neighbors.

Finally, let us define ”closing a triangle” as the process of
adding an edge to a wedge to create a triangle.

Assortativity is a graph metric that has been used in other
work [8]. Let us define K = {(Di, Dj)|eij ∈ E}. The assor-
tativity is the sample Pearson correlation coefficient for the
data K:

A =

∑
eij∈E(Di −D)(Dj −D)∑

eij∈E(Di −D)2

where D = 1
|E|

∑
eij∈EDi.

2.1 Generative models of graphs
A primary concern within the social network community

is how to define a process to generate edges in a network.
In their seminal 1960 paper, Erdos and Renyi proposed the
Erdos-Renyi Generative Graph Model, which is the first ran-
dom graph model [3]. This model treats every pair of edges
in the network as an independent Bernoulli trial, each exist-
ing with the same probability.

However, despite advantages provided by the Erdos-Renyi
graph model, it also has shortcomings. In particular, com-
monly observed statistics in social networks such as the de-
gree distribution, degree assortativity and clustering coef-
ficients are not modeled [18, 8]. The Chung Lu family of
models [2] theoretically and empirically correct the degree
distribution statistic. In addition, extensions such as Tran-
sitive Chung Lu (TCL) [9] and Block Two-level Erdos Renyi
(BTER) [5], model the clustering coefficients as well as the
degree distribution. BTER also creates assortativity in net-
works, but does not learn the amount of assortativity and
doesn’t generate negative assortativity. This is a limitation
to BTER as networks have varying amounts of assortativity
that are commonly negative[8]. In contrast, we will explictly
model both the amount of assortativity in the network and
allow for modeling of negative assortativity.

A central requirement for generative graph models of so-
cial networks is their scalability. Modern networks can have
tens of millions (e.g. Patents) to billions of vertices and
edges. To be of practical use, models must learn and sample
from the graph distribution in subquadratic time. Exponen-
tial Random Graph Models (ERGMs) [15] can theoretically
model the degree distribution, clustering and assortativity,
but their learning and sampling is (at best) quadratic in run-



time. Sampling from the Joint Degree Distribution (JDD)
model is quadratic over the number of nodes [16]. In con-
trast, the CL family of models (and our proposed extension)
is subquadratic, making them scale to large data.

Lastly, the Attributed Graph Model (AGM) [10] influ-
ences parts of our work. AGM extends scalable generative
graph models to sample from the joint distribution of edges
and attributes. By using Accept-Reject sampling [7], AGM
proposes edges using a generative graph model and accepts
them if they are from the joint distribution of attributes
and edges. In contrast, we utilize Accept-Reject sampling
to define a new distribution of structural networks which
incorporate assortativity.

2.2 Chung-Lu Models
Chung Lu models are characterized by the marginal prob-

ability of edges being proportional to the degrees of the end-
points. One example of a simple Chung Lu model is the Fast
Chung Lu (FCL) algorithm [11]. Another example is the
Transitive Chung Lu (TCL) [9], a model that extends the
Fast Chung Lu (FCL) algorithm. FCL is a generative graph
model that generates graphs with the same degree distri-
bution. TCL also preserves this property but additionally,
TCL preserves the clustering coefficient distribution of the
original graph. In the next section, we will propose a method
that can be augment Chung Lu models to additionally pre-
serve the assortativity of the input graph.

FCL generates a graph by repeatedly sampling edges and
adding them to the graph. Let G be an observed graph. Let
π be a sampling distribution for nodes such that π(i) = Di

2M
.

On each iteration, the FCL algorithm samples twice from π
to select an i, j pair and then adds the edge eij to the output
graph G′, connecting the two sampled nodes.

Let DFCL
i be the random variable of the degree of node vi

in the graph generated by FCL. Since the algorithm samples
from the degree distribution twice for each of the M edges,

E
[
DFCL

i

]
= M ∗ [π(i) + π(i)] = M · 2 Di

2M
= Di

Thus FCL preserves the degree distribution of the input
graph in expectation. In practice, it is possible to sam-
ple an edge that is already in the graph. In these cases,
FCL places the two endpoints on a queue instead of adding
the edge between them. Then, in the future, as long as the
queue is non-empty, instead of sampling from π for the first
node, the first node is selected by removing the node at the
front of the queue. With this addition, FCL will produce a
graph without edge collisions that still preserves the degree
distribution in general.

However, for most graphs, the observed clustering co-
efficient is much higher than what is generated by FCL.
The objective of generative graph models is to generate a
graph with similar structural characteristics. Thus, FCL has
a shortcoming by not matching the clustering coefficients;
TCL [9] fixes this.

TCL still samples nodes from π to form edges, but intro-
duces clustering by sometimes choosing (with probability ρ)
the target node j from the two-hop neighbors of the sam-
pled node i. This is equivalent to closing a triangle. These
extra triangles will increase the clustering coefficient. With
a judicious choice of ρ, the clustering coefficient distribu-
tion of the generated graph will approximately match that
of the input graph. This single parameter can be learned by

an Expectation-Maximization method after defining hidden
variables that indicate whether an edge was added by the
original FCL process or by closing a triangle. See [9] for
more detail.

2.3 Accept Reject Sampling
Accept reject sampling is a method used in statistics [7]

that we will employ in our BCL method. Suppose you have
two computable distributions Q and Q′, where Q′ is a pro-
posal distribution that is easy to sample from, but we wish
to sample from the target distribution Q that is more diffi-
cult to sample from directly. Using accept reject sampling,
we can repeatedly sample from Q′ but only accept the sam-
ple some of the time. In particular, for each value x that
we sample from Q′, we flip a Bernoulli coin with probabil-

ity proportional to Q(x)
Q′(x) and only accept the sample x if

the Bernoulli trial is a success. We repeat this process until
success. In particular the probability that x is sampled is:

A(x) =
Q(x)

Q′(x)M

where M is a constant such that A(x) ≤ 1. Thus, the prob-
ability of a success is∑

x

A(x)Q′(x) =
∑
x

Q(x)

M
=

1

M

Note that the distribution of trials necessary for success is
a geometric distribution with success probability 1

M
so the

probability of choosing x using the accept reject sampling is∑
t

(1− 1

M
)tA(x)Q′(x) = M

Q(x)

M
= Q(x)

which is what we desired.

3. ASSORTATIVITY IN GRAPH MODELS
Intuitively, assortativity measures the tendency for edges

to be placed between nodes of similar degree. If a graph
has negative assortativity, nodes tend to connect to nodes
with dissimilar degree. Conversely, if a graph has positive
assortativity, nodes tend to connect to similar degree nodes.

It is possible that there would be no correlation between
the degrees of nodes across an edge in a graph. However, for
many real-world datasets, there is such a correlation and in
some cases, it is a rather strong correlation. See Table 1 for
the observed assortativity (A) of such graphs. Facebook wall
has nodes for users and edges between people who post on
each other’s walls. Purdue Email is a graph where nodes are
email users and edges are between those who have exchanged
emails. The Gnutella dataset represents a Peer2Peer net-
work. Epinions is a graph where nodes are Epinion users and
edges are between users who ’trust’ each other. The Rovira
dataset is similar to Purdue email but consists of emails at
the University Rovira i Virgili in Tarragona. Lastly, Patents
is a citation network of US patents. These datasets will be
discussed more in depth later.

It is important to note that the assortativity doesn’t fully
capture the distribution of the degrees of nodes across edges.
It is well known that linear correlation misses a lot of infor-
mation in most two-dimensional distributions. Assortativity
is not an exception. To illustrate this, we give examples of
two graphs with the same assortativity but very different dis-
tributions of degrees across edges. Each graph is composed



Table 1: Network Statistics

Graph Nodes Edges A ÂTCL

Facebook Wall 444,829 1,014,542 -0.297 -0.0021
Purdue Email 54,076 880,693 -0.1161 -0.0092
Gnutella 36,682 88,328 -0.1034 0.0006
Epinions 75,865 385,418 0.0226 -0.0363
Rovira Email 1,133 5,451 0.0782 -0.0200
Patents 2,745,762 13,965,410 0.1813 0.0004

Table 2: Graph A

Number Subgraph
1782 5-star
16 11-clique

of disconnected subgraphs that are either stars or cliques.
An n-star is composed of one node connected to n one-degree
nodes. An n-clique is composed of n nodes where each node
is connected to every other node. The compositions of these
graphs can be seen in Tables 2 and 3. Both of these graphs
have the exact same degree distributions as shown in Table
4 and have the same assortativity of A = 9

187
.

We now present a method to (coarsely) visualize the joint
degree distribution in Figures 1a and 1b. In this method,
we divide the degrees of the graph into k sets or bins that
we refer to as Bk = [B1, B2, ..., Bk]. Let b(D) be a function
that returns the set membership for a given degree D. For
the two graph examples, we can use k = 3 and let B1 =
{1}, B2 = {5}, B3 = {10}. Thus the nodes of degree 1 are in
one set, the degree 5 nodes in another, and those of degree
10 in the final set.

Now we can construct a k × k matrix B to represent the
joint degree distribution, where each cell i, j counts the num-
ber of edges between nodes with degrees in Bi and those with
degree Bj . In other words, an edge eij would be counted
in cell b(Di), b(Dj). So for instance, in our case, all edges
where both endpoints have degree 5 would be placed in B2,2.
When visualizing B, we use a gray scale intensity plot to in-
dicate the number of edges in each cell (i.e., a cell without
any edges will be colored white and a cell with the largest
amount of edges will be close to black). Figures 1a and 1b
visualize B for the example graphs A and B.

Assuming the sets Bn are ordered by degree of vertices, as
we do above, these plots are closely related to assortativity.
If the dark boxes lie in a line with positive slope, the graph
will have positive assortativity whereas if the dark boxes lie
in a line with negative slope, the graph will have negative
assortativity. In fact, these binned plots are a histogram

(a) Graph A (b) Graph B

Figure 1: Joint degree distributions

Table 3: Graph B

Number Subgraph
8910 2-clique
1782 6-clique
176 10-star

Table 4: Degree Distributions

Degree Graph A Graph B
1 8910 8910
5 1782 1782
10 176 176

approximation of the full joint distribution of the degrees of
endpoints for edges. The assortativity is then merely the
correlation coefficient of this distribution.

It can be seen in Figures 1a and 1b that the distribution
is very different for the two graphs despite their having the
same assortativity and degree distributions. This example
illustrates and demonstrates the claim that the single dimen-
sional measure of assortativity does not fully capture the
joint distribution of the degrees of the endpoints of edges.

Thus far, generative graph models do not explicitly model
positive and negative assortativity. The various Chung Lu
models, CL, FCL, and TCL do not create nonzero assorta-
tivity and BTER generates positive assortativity as a byprod-
uct, but does not attempt to maintin the assortativity value
from the original graph. There are also generative models
that attempt to model joint degree distributions, which is
the probability that an edge randomly selected will be be-
tween nodes of certain degrees. Assortativity can be used as
a sufficient statistic for modeling joint degree distributions,
and Stanton and Pinar [17] are able to construct simple
graphs that match a given joint degree distribution. How-
ever, their MCMC approach to sampling is quadratic in the
number of nodes, thus is it not practical to apply for large
networks. In contrast, our binning approach to modeling
assortativity with Chung Lu models is linear in the number
of edges, thus BCL makes it feasible to generate large-scale
networks with assortativity.

3.1 Binning Approach
Most generative graph models are not able to reproduce

assortativity, and even fewer model negative assortativity.
As this is a structural characteristic of a graph, it is an ad-
vantage for generative graph models to preserve this metric
in the resulting graph. While the Chung Lu models pre-
sented preserve other metrics, the processes produce no cor-
relation between the degrees of endpoints of edges and there-
fore the generated graphs will have trivial assortativity (see
Figure 1, last column). We propose the Binning Chung Lu
(BCL) model to capture assortativity. BCL uses an existing
edge-by-edge generative graph model (CL) and augments it
with accept-reject sampling based upon ij degree combina-
tions to better match assortativity in the network. In fact,
BCL is general enough to augment any CL model.

We use the binning idea introduced in the previous section
in BCL. We define the sets of vertices Bk in a particular
way. Let us create a “degree vector” as an ordered set of
the vertices where each vertex vi is repeated Di times. So
a given vertex with degree 3 would appear 3 times in the
degree vector. As such, the size of the degree vector is |E|.



Finally let us sort this vector by the degree of the vertices
so the vertices with low degree appear on one end and the
vertices with high degree appear on the other end.

Let us now divide the degree vector into k consecutive
parts. We define these parts Bp as the set of degrees that
fall between the (p − 1)th quantile and the pth quantile of
the degree vector. Note that these sets Bk are ordered by
degree. Finally, we can use these sets to count the edges eij
in the cell b(Di), b(Dj) of B as discussed earlier.

Given this coarse, binned representation of the joint de-
gree distribution B, we can outline an accept-reject sampling
method as discussed in the background section to optimize
it during graph generation. The original CL model is the
proposal distribution Q′ that is easy to sample from and we
define the target distribution Q to be network distribution
with the same binned joint degree distribution as the input
graph.

To implement accept-reject sampling, we first compute
B from the observed input graph G. Then we generate a
graph G′ from a Chung Lu model CL and compute, using
the same bins B, the joint degree distribution B′ from G′.
From these, we can calculate the acceptance probabilities A
are calculated in the following way.

R(m,n) =
#{eij ∈ E | b(D(i)) = m ∧ b(D(j)) = n}
#{eij ∈ E′ | b(D(i)) = m ∧ b(D(j)) = n} =

Bmn

B′
mn

A(m,n) =
R(m,n)

maxmnR(m,n)

We refer to the sampling process of the CL model as π(Θ).
Thus, we sample two nodes i, j from π and after each sample,
determine whether to accept or reject the edge eij depending
on the acceptance probability for the bin that the sampled
edge falls into. We repeat this process until we have sampled
as many edges as the original graph.

This algorithm can be seen in 1. G is the original graph, π
is the CL model, and Θ is the parameters for the CL model.
Note that we first must generate a preliminary graph using
the CL model so that we can compute the acceptance prob-
abilities. In algorithm 1, π(Θ) refers to sampling a target
node from a general CL model. Additionally, b(Di) returns
the bin membership of a node i with degree Di in the in-
put graph G. Thus A(b(Di), b(Dj)) returns the acceptance
probability from the appropriate cell of B for the proposed
edge eij .

Because of the properties of accept-reject sampling, the
resulting graph will approximately have the same bin fre-
quencies as B. If two graphs have the same bin frequencies,
the joint distribution of endpoint degrees will be approx-
imately the same. This will imply that the assortativity
of the generated graph will approximately match that of
the input graph. This will be shown empirically in the ex-
periments section. Additionally, it can be shown that our
BCL method preserves the degrees of nodes. In particu-
lar, when the binning method is used on top of a Chung
Lu method, the marginal probability of an edge under the
resulting model is proportional to the degrees of the end-
points.

Algorithm 1 Binning Chung Lu Models(G, π,Θ, k)

1: Compute k × k bin frequencies B from G
2: Generate G′ from π, using G and Θ
3: Compute k × k bin frequencies B′ from G′

4: Compute A(m,n) from B and B′

5: Create empty graph GBCL

6: while |EBCL| ≤ |E| do
7: < i, j >= edge sampled using π(Θ)
8: a = A(b(Di), b(Dj))
9: r = bernoulli sample(a)

10: if r = 1 then
11: EBCL = EBCL ∪ eij
12: end if
13: end while
14: return(GBCL)

4. EXPERIMENTS
Experiments were performed to assess the algorithms. To

empirically evaluate the models, we learned model parame-
ters from real-world graphs and then generated new graphs
using those parameters. We then compared the network
statistics of the generated graphs with those of the original
networks.

4.1 Datasets
We used six different datasets to evaluate our experimen-

tal results. Five of them are all social networking datasets,
while the last, patents, is a citation network. Their node
and edge counts can be found in Figure 1.

The first dataset we study is a collection of Facebook wall
postings from the period 03/01/07–03/01/08, among the set
of 56,061 publicly visible users the Purdue University Face-
book network. In this network, the users can add each other
to their lists of friends and the edge set represents a wall
posting between friends.

Next, we study a collection of emails gathered from the
SMTP logs of Purdue University [1]. This dataset has an
edge between users who sent e-mail to each other. The mail-
ing network has a small set of nodes which sent out mail at
a vastly greater rate than normal nodes; these nodes were
most likely mailing lists or automatic mailing systems. In
order to correct for these ‘spammer’ nodes, we remove nodes
with a degree greater than 1, 000 as these nodes did not rep-
resent participants in any kind of social interaction. The
network has over two hundred thousand nodes, and nearly
two million edges.

The Gnutella30 network is a different type than the other
networks presented. Gnutella is a Peer2Peer network where
users are attempting to find seeds for file sharing [14]. The
user reaches out to its current peers, querying if they have a
file. If not, the friend refers them to other users who might
have a file, repeating this process until a seed user can be
found. Because this network represents the structure of a
file sharing program rather than true social interactions, it
has significantly less clustering than the other networks.

The next dataset we analyze is the Epinions dataset [13].
This network represents the users of Epinions, a website
which encourages users to indicate other users whose con-
sumer product reviews they ‘trust’. The reviews of all users
on a product are then weighted to incorporate both the re-
viewer ratings and the amount of trust received from other



(a) Facebook Wall (b) Purdue Email

(c) Gnutella (d) Epinions

(e) Rovira (f) Patents

Figure 2: Degree Distributions

users. The edge set of this network represents nominations
of trustworthy individuals between the users.

In addition to the Purdue email dataset mentioned earlier,
we also study the Rovira email dataset [4]. This smaller net-
work consists of a network of students at University Rovira
i Virgili in Tarragona. Nodes are users and edges represent
that at least one email was sent.

Lastly, we study a citation network of US Patents [6].
Nodes in this network are published patents, while edges
indicate one patent cited the other. This is a large network,
with over 10 million citations between 2 million edges and
demonstrates the scalability of our proposed methods.

4.2 Methods Compared
We compare BCL (in conjunction with TCL and FCL)

against the Block Two-Level Erdos-Renyi (BTER) model1

[5], TCL, and FCL. The BTER model [5] groups vertices
with similar degrees into blocks with high probability, re-
sulting in networks with a high amount of clustering and
positive assortativity. As a result, BTER cannot model net-
works where the assortativity is independent of the cluster-
ing, meaning augmenting BTER with BCL would interfere
with the clustering that BTER models. In contrast, the de-
gree and clustering statistics of FCL and TCL are indepen-
dent from the assortativity. Thus, we compare FCLB (BCL
with FCL proposal distribution) and TCLB (BCL with TCL
proposal distribution) against FCL, TCL and BTER. We
will demonstrate how TCLB can jointly model degree, as-
sortativity and clustering, in contrast to any of the baseline
models.

1Downloaded from www.sandia.gov/ tgkolda/feastpack

(a) Facebook Wall (b) Purdue Email

(c) Gnutella (d) Epinions

(e) Rovira (f) Patents

Figure 3: Clustering Coefficients

4.3 Methodology
We ran experiments on six datasets using five different al-

gorithms. The five algorithms were Fast Chung Lu (FCL),
Transitive Chung Lu (TCL), Fast Chung Lu with Binning
(FCLB), Transivitive Chung Lu with Binning (TCLB), and
BTER. For evaluation, we compared the graphs generated
by the algorithms using different metrics. The metrics used
were the complementary cumulutive distribution function
for both the degree distribution and the distribution of local
clustering coefficients. Additionally, the assortativity coef-
ficient and distribution of the degree of nodes across edges
were compared. To compare these, we will use a binning
number of 10 bins, and split the degree vector of the orig-
inal graph based upon 9 quantiles (since we had 10 bins).
We will plot the edges between nodes by graphing the total
number of connections between quantiles. Low degree bins
are in the lower left corner while high are to the right and
at the top. Thus, the edges in the lower left bins are low
degree vertices connected to low degree vertices. Each gen-
erated graph will have the same quantile cutoff points by
using the original graphs.

4.4 Results
In figure 2, the degree distributions can be seen. It is

apparent that all the Chung Lu models and BTER closely
match the degree distribution of the original graph.

In figure 3, the local clustering coefficient distributions can
be seen. The Fast Chung Lu models consistently miss the
distribution of the original graph. However, the transitive
version works significantly better along with BTER. Addi-
tionally, the binning method doesn’t significantly change the



Figure 4: Assortativity

clustering even if the clustering is different from the original
graph as in FCL.

Finally, the assortativity can be seen in figure 4. It can be
seen that the non-binning Chung Lu models have assortativ-
ity very close to zero. However, the Chung Lu models with
binning match the assortativity well. BTER has positive
assortativity that doesn’t match that of the original graph
in general.

However, as mentioned earlier, assortativity doesn’t com-
pletely describe the “assortativity distribution”. For this
reason, we have shown the distributions. The graphs are
set up so that the axes are quantile scales rather than ab-
solute scales just as the bins are defined. This is important
to note because the assortativity is measured on the abso-
lute scale which is linear while the quantile scales turn out
to be more logarithmic in most cases because of the non-
uniform degree distribution. However, note that since the
Chung Lu methods roughly match the degree distributions,
if the distributions align on the quantile scales, they will also
align on the absolute scales. The darker regions correspond
to a higher density of edges. White always corresponds to
zero density while black refers to the maximum density for
a given graph. The graphs can be seen in figures 5, 6, 7, 8,
9, and 10. It can be seen that the binning method creates
graphs that have very similar assortativity distributions to
the original graph while BTER creates very different assor-
tativity graphs that look like a simple linear correlation.

(a) ORIG (b) TCLB (c) FCLB

(d) BTER (e) TCL (f) FCL

Figure 5: Facebook Wall

(a) ORIG (b) TCLB (c) FCLB

(d) BTER (e) TCL (f) FCL

Figure 6: Purdue Email

(a) ORIG (b) TCLB (c) FCLB

(d) BTER (e) TCL (f) FCL

Figure 7: Gnutella

5. CONCLUSIONS
Chung Lu models have shown to be effective in preserving

some of the structural attributes of graphs. However, there
has not been one developed that preserves the assortativ-
ity of graphs. Further, assortativity is a limited structural
characteristic and the assortativity distribution better cap-
tures the structural nature of the graph. In this paper, we
proposed a course binning technique to capture the joint de-
gree distribution of endpoints of edges. Using accept reject
sampling with these bins, a method was presented that can
be placed on top of a Chung Lu method to preserve the as-
sortativity without increasing the computational complexity
by more than a constant factor.

This method was used with two different Chung Lu mod-
els, Fast Chung Lu and Transitive Chung Lu. Empirically,
it was shown that this method was effective in preserving
assortativity of the original graph and not changing degree
distribution or clustering coefficient of the non-binning ver-
sion. This is in contrast to BTER and the non-binning ver-
sions which do not match the assortativity.

The effects of the binning method could be tested on other
Chung Lu models perhaps such as those that additionally
model graph attributes such as AGM. Additionally, the bin-
ning method could perhaps be generalized to be used on



(a) ORIG (b) TCLB (c) FCLB

(d) BTER (e) TCL (f) FCL

Figure 8: Epinions

(a) ORIG (b) TCLB (c) FCLB

(d) BTER (e) TCL (f) FCL

Figure 9: Rovira

(a) ORIG (b) TCLB (c) FCLB

(d) BTER (e) TCL (f) FCL

Figure 10: Patents

top of models that are not Chung Lu models such as BTER
so that the assortativity of the original graph could be pre-
served.

6. REFERENCES
[1] N. Ahmed, J. Neville, and R. Kompella. Network sampling:

From static to streaming graphs. ACM Transactions on
Knowledge Discovery from Data, 2014.

[2] F. Chung and L. Lu. The average distances in random
graphs with given expected degrees. Internet Mathematics,
1, 2002.

[3] P. Erdos and A. Renyi. On the evolution of random graphs.
Publ. Math. Inst. Hung. Acad. Sci, 5:17–61, 1960.

[4] R. Guimer̀I, L. Danon, A. DÌ?az-Guilera, F. Giralt, and
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