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ABSTRACT
Many individuals on social networking sites provide traits
about themselves, such as interests or demographics. So-
cial networking sites can use this information to provide
better content to match their users’ interests, such as rec-
ommending scheduled events or various relevant products.
These tasks require accurate probability estimates to deter-
mine the correct answer to return. Relational machine learn-
ing (RML) is an excellent framework for these problems as
it jointly models the user labels given their attributes and
the relational structure. Further, semi-supervised learning
methods could enable RML methods to exploit the large
amount of unlabeled data in networks.

However, existing RML approaches have limitations that
prevent their application in large scale domains. First, semi-
supervised methods for RML do not fully utilize all the unla-
beled instances in the network. Second, the collective infer-
ence procedures necessary to jointly infer the missing labels
are generally viewed as too expensive to apply in large scale
domains. In this work, we address each of these limitations.
We analyze the effect of full semi-supervised RML and find
that collective inference methods can introduce considerable
bias into predictions. We correct this by implementing a
maximum entropy constraint on the inference step, forcing
the predictions to have the same distribution as the observed
labels. Next, we outline a massively scalable variational in-
ference algorithm for large scale relational network domains.
We extend this inference algorithm to incorporate the maxi-
mum entropy constraint, proving that it only requires a con-
stant amount of overhead while remaining massively parallel.
We demonstrate our method’s improvement over a variety of
baselines on seven real world datasets, including large scale
networks with over five million edges.
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1. INTRODUCTION
Many individuals on social networking sites provide infor-

mation about their preferences and behaviors (e.g., profile
and activity information). Social networking sites can use
this information to better target relevant content to their
users. For example, for scheduled events (e.g., concerts),
the social networking site can determine whether the event
is relevant to a user’s interest and, if so, recommend it to
the user. After some initial users have indicated whether
they are/are not attending, the service can predict other
interested users based on the relational information in the
network (i.e., links among users). These types of predic-
tion tasks occur in a variety of scenarios; for example, a site
may be interested in estimating the number of users that
will like a news article or buy a product, and users may be
interested in estimated answers to relational summarization
queries, such as “do my friends prefer rock or rap?” Methods
that can make accurate predictions about unobserved user
preferences are critical for estimation of user-level behaviors.

Common approaches to these types of tasks—where the
goal is to accurately predict class probabilities for the set
of unlabeled users in the network, given a small subset of
labeled users—include conventional machine learning meth-
ods for independent and identically distributed (IID) data
(e.g., logistic regression), or simple inference-only relational
models such as label propagation (LP) [20, 10]. However,
these approaches are limited in the sense that they only uti-
lize either intrinsic information (e.g, attributes) or external
sources (e.g., neighboring labels), and they do not learn how
to combine them together.

Relational machine learning (RML) approaches focus on
learning the relative importance of the relational informa-
tion to the intrinsic information. Traditionally, the param-
eters for a local conditional model are maximized by solely
learning from a labeled subgraph (Figure 1.a), where an ob-
served vertex’s label is conditioned on the observed neigh-
bors’ labels and intrinsic attributes. RML then “stitches
together” a full joint model by collectively inferring all unla-
beled instances. Semi-supervised learning (SSL) RML meth-
ods have been developed for partially-observed single net-
work domains where the goal is within-network learning and
inference [18, 12]. However, RML SSL methods have limited
applicability for sparsely-labeled, large-scale networks due to
their restricted performance gains and poor scalability.

More precisely, although IID learning algorithms for SSL
usually treat the unlabeled data as weighted probabilistic
samples, the same cannot be said for the general RML SSL
approaches. Methods such as relational expectation maxi-
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Figure 1: (a) Pseudolikelihood over the labeled subgraph GL. (b) Composite likelihood over the full graph
G, where predicted labels for unlabeled (dashed) vertices are only considered as features of labeled vertices
during learning and (dashed) links among unlabeled vertices are only used during collective inference. (c)
Pseudolikelihood over the full graph G, where all vertices/edges are used for learning.

mization (relational EM, e.g., [18]) partly extend the view of
traditional RML learning by utilizing the predictions of the
unlabeled examples, incorporating these solely as attributes
to the labeled examples (Figure 1.b). Note that in this ex-
ample, the predictions for the dashed vertices are only con-
sidered as features during learning, not as labels. This is in
contrast to IID SSL methods, which treats inferred predic-
tions as labels that are used to relearn the parameters (see
e.g., [13]) (Figure 1.c). In this case, learning corresponds to
a weighted maximization problem, where the weights of the
unlabeled corpus are equal to the previously inferred proba-
bilities. Prior work on relational EM has generally not used
this information, largely due to reductions in performance
(although special exceptions exist, e.g. [12]).

In addition, although various approximations for learn-
ing RML models are generally the same order complexity as
IID models, inference with RML models is generally viewed
as a limiting factor for large scale implementations. RML
methods require the use of collective inference to jointly in-
fer label probabilities throughout large networks, and prior
work has rarely been applied on networks with more than
10s of thousands of examples (see e.g., [14, 12]). This is in
contrast to both IID learning and simple LP models that
have previously been applied to large scale data and employ
simple parallel inference algorithms.

In this work, we extend relational SSL approaches to ad-
dress these two issues and apply them on sparsely-labeled,
large-scale networks. In the first component of this work,
we discuss how previous relational EM approaches can lead
to extreme biases during inference—in particular, relearning
from the inferred predictions in relational domains generally
collapses all predictions to a singular prediction (e.g., all
predict negatively labeled with high probability). To solve
this, we augment the inference step of the EM algorithm to
include a maximum entropy constraint. Our method (Max-
EntInf) adjusts the label predictions at every step of col-
lective inference so they adhere to maximum entropy con-
straints; namely, we force the predicted label proportions
(i.e., percentage predicted positive vs. negative) to align
with the proportions observed in the training set. Note the
difference from typical maximum entropy approaches that
augment the learning step of the algorithm; in this work,
we adjust the inference step. Moreover, our approach pro-
vides a more general correction than [12], which requires a
special model form and regularizer. MaxEntInf can be eas-
ily combined with any chosen RML conditional distribution,
to keep predictions from collapsing to a singular value, and
thus enables the use of more general SSL techniques.

In the second component of our work, we demonstrate
that the collective inference step used by RML algorithms
can easily be massively parallelized. In particular, we show
that through asynchronous updates to variational inference
methods, we can achieve linear speedup in terms of the num-
ber of cores. This speedup is largely attained due to the
avoidance of synchronous updates to high degree vertices
(common in real world networks in spite of their sparsity),
which would effectively stop the parallelism. Our MaxEntInf
algorithm is simple to extend to this massively parallel case
and we prove that it requires only a constant overhead for
both sequential and parallel algorithms (since it requires a
bounded constant number of data samples to compute the
correction).

The contributions of this work include the following:

• Identification of a bias with RML SSL learning algo-
rithms in sparsely labeled networks.

• Development of maximum entropy inference (MaxEntInf)
to correct the bias.

• Parallelized inference for RML and MaxEntInf.

• Proven error bounds for inference approximations, in-
cluding both sequential and parallel cases. In particu-
lar, MaxEntInf correction can be employed with con-
stant overhead.

We demonstrate the accuracy and scale of our correc-
tion and parallel algorithm on seven real world datasets. In
particular, we find that our SSL methods using MaxEntInf
outperform a variety of competing state-of-the-art baselines,
both independent learners and simple relational-only mod-
els. We can use the accurate probabilities predicted by Max-
EntInf for a variety of problems, including the relational
summarization task described above. Notably, we apply our
methods networks with over five million edges, demonstrat-
ing it scales to networks orders of magnitude larger than
prior implementations.

2. RELATIONAL MACHINE LEARNING
Define a graph G = 〈V,E〉 to represent our social net-

work, with vi ∈ V corresponding to the individuals (ver-
tices) and E ⊆ V × V indicating the friendships (edges).
Let X,Y define the sets of attributes and labels. Every
vi ∈ V has a corresponding set of attributes xi ∈ X and a
class label yi ∈ Y.

In a social network, a subset of items VL are presumed
labeled. Our task is to jointly predict the remaining un-
known labels (YU ) using the known labels YL, attributes



X and graph G. Within RML, we can express this statement
as jointly inferring the unknown labels given the available
information P (YU |YL,X, G). RML utilizes a local condi-
tional model C, with corresponding parameters ΘC , to learn
and infer labels within the network. A wide array of re-
lational local conditional models C exist, and we can view
most as a relational extension to common independent mod-
els (e.g., relational naive Bayes or relational logistic regres-
sion). As many instances are unavailable, traditional RML
learns a function from the labeled subgraph GL where all of
the neighbors to all of the instances are known.

Θ̂C = arg max
ΘC

P (YL|XL, GL,ΘC) (1)

To make predictions, these parameters are then applied to
jointly predict the unlabeled instances on the entire network
(not just GL):

P (YU |YL,X, G, Θ̂C)

To reduce clutter, in the remainder of this paper we drop
references to X: it is fixed and always conditioned on, re-
gardless of the learning representation. RML utilizes condi-
tional independence to simplify the above expressions. Let
YMB∗(vi) indicate the labels of the Markov blanket of a
vertex vi, or the friends of an individual vi, on a graph G∗.
The full joint distributions are broken into local conditional
distributions of the form:

P (yi|YMB∗(vi),ΘC)

By maximizing the pseudolikelihood of the labeled sub-
graph GL we can learn the local model parameters ΘC in a
scalable fashion:

Θ̂C ≈ arg max
ΘC

∑
vi∈VL

logP (yi|YMBL(vi), GL,ΘC) (2)

Unlike independent models, we must perform collective
classification for inference, due to the dependencies between
the unlabeled instances in the network. To this end, the
local conditional probabilities are combined with a global
inference method (such as variational inference) to estimate
the joint distribution over the unlabeled vertices, i.e:

P (YU |YL, G) ≈ Q(YU ) =
∏

vi∈YU

Qi(y)

where each component Qi(y) is iteratively updated in a co-
ordinate ascent algorithm:

Qi(y) ∝ exp
{
EYU\if(yi|YMB(vi), G,ΘC)

}
where f(·) is the unnormalized energy function. Through-

out this work, let ỸU indicate the current joint probability
estimates of the unlabeled instances that are iteratively up-
dated via variational inference.

2.1 Semi-Supervised Learning
Many relational learning tasks involve learning and infer-

ence within a single large, partially-labeled network. In this
case, a natural extension from the above RML methods uti-
lizes the unlabeled data to make better predictions within
the network. The most common form utilizes expectation
maximization (EM; Algorithm 1). EM iteratively updates
the parameter estimates by utilizing the expected values of
the unlabeled examples to relearn the parameters and can
be divided into two basic steps.

Algorithm 1 Relational-EM(YL,X, GL, C)
1: Θ̂C = InitialParameters(YL,X, GL)
2: while More Iterations or Not Converged do
3: P (YU )t = UpdateInferences(YL,X, G, Θ̂

t−1
C )

4: Θ̂t
C = UpdateParameters(YL, P (YU )t,X, GL)

5: end while
6: P (YU ) = FinalizeInferences(YL,X, G, Θ̂

T
C )

E-Step: evaluate P (YU |YL, G,Θt−1
C ) (3)

M-Step: learn ΘtC

arg max
ΘC

∑
YU∈YU

P (YU |YL, G,Θt−1
C ) logP (YU ,YL|G,ΘC) (4)

We can compute the E-Step (Eq. 3) via RML collective
classification methods; but, as with other RML optimiza-
tions, the M-Step (Eq. 4) is intractable to compute directly.
Existing relational EM methods [18] simplify the expression
by optimizing the composite likelihood (Eq. 6) instead:

E-Step: evaluate P (YU |YL, G,Θt−1
C ) (5)

M-Step: learn ΘtC

arg max
ΘC

∑
YU∈YU

P (YU |YL, G,Θt−1
C )

∑
vi∈VL

logP (yi|YMB(vi)
,ΘC)

(6)

By utilizing the additional relational information provided
by the unlabeled instances, relational EM methods generally
outperform traditional RML.

3. LIKELIHOOD APPROXIMATIONS
As discussed in the previous section, computing the full

joint likelihood (Eq. 1) is not scalable to large datasets.
Hence, RML maximizes the pseudolikelihood over the la-
beled graph GL (Eq. 2) , while relational EM methods max-
imize the composite likelihood on the graph G (Eq. 6) . Note
that although the composite likelihood over the graph G is
similar to the pseudolikelihood, it is distinct as it only sums
over the log conditional distributions of the labeled instances.

We graphically illustrate the differences between the learn-
ing approaches in Figure 1. Figure 1.a shows the traditional
RML maximization problem, which uses the full pseudolike-
lihood of the labeled graph GL. Relational EM methods use
additional information from the predicted label values. In
particular, the neighboring probabilities are incorporated as
attributes for the label maximization step. This is shown
in Figure 1.b, where the solid outlined instances are treated
as labeled instances for maximization and the dashed in-
stances are only used as attributes. Since this is only a par-
tial pseudolikelihood, we refer to these learning algorithms
as composite likelihood EM (CL-EM) methods.

Figure 1.c shows the full pseudolikelihood maximization,
where every solid instance (including the unlabeled items)
is used to update the parameter values. This corresponds to
the critical component of EM that has been shown to work
well for independent data/IID learners—incorporating prob-
abilistic samples of the unlabeled instances into the training
set allows the learners to observe new correlations between
the various attributes and labels that were not present in the
original labeled set. We formalize the generalized relational
pseudolikelihood EM (PL-EM) approach as:
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Figure 2: DVD: Naive application of the pseudo-
likelihood exaggerates error produced by RML and
CL-EM. (a) For small priors the probabilities are
underestimated, while for (b) large priors the prob-
abilities are overestimated.

E-Step: evaluate P (YU |YL, G,Θt−1
C ) (7)

M-Step: learn ΘtC

arg max
ΘC

∑
YU∈YU

P (YU |YL, G,Θt−1
C )

∑
vi∈V

logP (yi|YMB(vi)
,ΘC)

(8)

Note the difference between PL-EM maximization (Eq. 8)
and CL-EM maximization (Eq. 6). CL-EM maximizes strictly
over the labeled data, while the PL-EM incorporates the es-
timates of the unlabeled instances as well. Thus, when new
attribute combinations are observed in the unlabeled por-
tion of the network, PL-EM can learn these values as well.

In Figure 2 we show the effect of a naive application of PL-
EM to learning and inferring on the DVD dataset (discussed
more in Sec. 6). As we can define the positive class label
for DVD by thresholding at various Amazon sale ranks, we
can examine the effect of RML, CL-EM and PL-EM in re-
lation to the two different prior distributions (shown as the
black horizontal lines). We use a relational logistic regres-
sion (RLR) as the base conditional model and then observe
the distribution of final predictions produced by a variety of
relational estimation and collective inference methods (CL-
EM, PL-EM, LP). Deviations from where the prior (True)
intersects with the vertical line at 0.5 predicted probability
shows bias in the final predicted probabilities. The RLR
model alone produces some bias in the predictions, which
CL-EM roughly follows. However, naive application of PL-
EM for estimation produces substantial bias away from the
true prior. Since most class label variables in relational do-
mains have a skewed prior, the true distribution of labels
would be grossly misestimated by PL-EM.

Although some work in relational domains has augmented
particular classifiers to account for this type of bias [12], they
modify the optimization function via a regularizer and as-
sume a specific form that is not applicable to all models. In
the next section, we will outline a general correction to the
inference step that is simple to implement in conjunction
with any relational classifier. Further, we prove it is well
approximated with constant overhead and demonstrate how
to incorporate it into a massively parallel inference mecha-
nism, allowing us to jointly learn and infer relational SSL
models on large scale data.

4. MAXIMUM ENTROPY INFERENCE
In this section, we introduce our method to correct for

the biases experienced by relational classifiers during their
inference step; more generally, this will allow us to improve
relational EM by utilizing the full pseudolikelihood over all
unlabeled data during an EM process.

Note that given a labeled sample VL ⊆ V, it is simple to
compute the proportion of observed label types P (y) (e.g.,
P (−), P (+)). We aim to satisfy the following maximum
entropy constraint:

Proposition 1. The proportion of unlabeled items with
predicted value y should equal the proportion of labeled items
with value y.

This forms the basis of our maximum entropy inference
(MaxEntInf) approach, which will we will use to augment
standard collective inference algorithms. We use variational
mean field (VMF) inference as our example inference proce-
dure, but the results are more general.

Recall that VMF assumes an approximating distribution
Q(YU ), such that P (YU |YL, G,ΘC) ≈ Q(YU ). For a possi-
ble YU ∈ YU , VMF assumes a fully factorized formQ(YU ) =∏
vi∈VU

Qi(y), where (in a slight abuse of notation) we have
a factorized probability of vertex vi having label y. After
each round of VMF, every Qi(y) ∈ Q(YU ) corresponds to
the probability of an instance having a particular label. For
example, for every unlabeled instance with Qi(+) ≥ 0.5 the
corresponding predicted label ŷi is +. MaxEntInf forces the
proportion of unlabeled instances with Qi(+) ≥ 0.5 to be
exactly P (+). In more formal terms, MaxEntInf constrains
the first moment of the predicted population to match the
first moment of the observed population.

Our method will focus on a linear shift around an offset,
which (without considerable checks) could result in proba-
bilities lying outside [0, 1]—thus directly working with the
probabilities themselves is problematic. To this end, we
perform a transform of the current probabilities (i.e., every
Qi(+)) using the logit function (i.e., σ−1(x) = log[x/1−x]):

zi = σ−1(Qi(+)) = log

(
Qi(+)

1−Qi(+)

)
The values zi ∈ Z take values in the range [−∞,+∞],

meaning that a linear transform within this space can then
be transformed back into probability space through the lo-
gistic function (i.e., σ(x) = (1 + e−x)−1).

Next let z(r) indicate the rth ranked value of Z (i.e., index
r after Z are sorted). Let φ be our linear pivot—the index
that will split the sorted range into two proportions, one
approximately equal to P (−) and the other approximately
equal to P (+) (i.e., P (−) · |VU |). Formally, we have:

φ = arg min
r

(∑|VU |
i=1 I[i ≤ r]
|VU |

− P (−)

)2

Lastly, for all zi ∈ Z we subtract off the corresponding
pivot value z(φ). The result is then transformed back to the
probability space to define Qi(y):

Qi(+) = σ
(
zi(y)− z(φ)

)
Qi(−) = 1−Qi(+)

In particular, note that our transformation of z(φ) is as-

signed Q(φ)(y) = σ
(
z(φ) − z(φ)

)
= σ (0) = .5, splitting the

data into the two desired proportions to enforce the max-
imum entropy constraint. Further, the transformation is



Algorithm 2 MaxEntInf(G,VS , ỸU , C)
1: P (−) = NegativeProportion(YL)
2: while Not Converged or More Iterations do
3: Z = []
4: for every vi ∈ VS do
5: update variational Qi(y)
6: Z.insert(logit(Qi(+))
7: end for
8: Z.sort()
9: φ = P (−) ∗ |Z|

10: for every vi ∈ VS do
11: Qi(+) = logistic(logit(Qi(+)) - Z[φ])
12: Qi(−) = 1−Qi(+)

13: ỸU .update(Qi(y))
14: end for
15: end while

lossless as it maintains a perfect ordering of the predicted
label probabilities.

Our initial sequential VMF algorithm is described in Al-
gorithm 2: as input to the sequential algorithm, we set
VS = VU , meaning the single thread updates every unla-
beled instance. The method begins by computing the prior
P (−). This is followed by a while loop that can either ter-
minate upon convergence, or until some maximal number of
iterations has been processed. The traditional VMF updates
are computed in Lines 4-7, with each iteration performing
the point wise update to the Qi(y) factor, followed by com-
puting zi. Lines 8-9 computes the corresponding offset, and
then lines 10-13 calibrate the VMF estimates, storing the
corrected result in ỸU for future iterations of the VMF al-
gorithm.

Note that the correction does not require any assumptions
about the conditional distribution form, as in prior work. All
it requires is that the estimators return a set of probabilities.

Approximating MaxEntInf with
Constant Sample Sizes
We can improve the runtime of the above sequential algo-
rithm by sampling from the vector of logit values. In par-
ticular, we can prove that with a high confidence (1 − δ),
the chosen offset has provably small error (ε). Importantly,
the size of sample does not depend on the data size; rather,
it only depends on the amount of error and confidence we
wish to have. Define VS ⊆ VU , φs = P (−) · |VS | and
Zs = {zi|zi ∈ Z ∪ vi ∈ VS}. Then, we desire the following:

P
(
zs(φs) ∈ z(φ±ε)

)
≥ 1− δ

That is, of the full distribution VU , the z(φs) we choose in
the subsample VS is no more than ε away from the z(φ) in
the full data. This error can be bounded using the Lemma
7 of Manku et al. [11]:

Lemma 1 (Lemma 7 of [11]). Let VS ⊆ VU be a uni-
formly random subset from the unlabeled vertices, φ be the
index of our offset, ε be the amount of error in the chosen in-
dex we will allow, and δ be the probability bound. To satisfy
zs(φs) ∈ z(φ±ε) with 1− δ probability, we must have:

|VS | ≥

√
1

2ε2
log

(
2

δ

)
Thus, we require a constant number of samples from VU .

Algorithm 3 Parallel-MaxEntInf(G,YL,VU , T, C)
1: [V1

U , · · · ,VT
U ] = RandomSplit(VU , T )

2: ỸU = SharedMemManager(YU )
3: for t ∈ 1, · · · , T do
4: spawn Rt := MaxEntInf(G,YL,V

t
U , ỸU , C)

5: end for
6: for t ∈ 1, · · · , T do
7: join thread Rt upon completion
8: end for
9: return ỸU

For example, if we set ε = .05 to be the amount of error
in the index and δ = .05 as the probability bound, then to
ensure 95% probability of success (1 − δ), there only needs
to be 28 samples in VS . Thus, as |VU | grows |VS | remains
fixed, meaning our correction has a constant overhead.

Corollary 1 (Sequential Constant Overhead).
For a specified ε and δ, an approximation to the proposed se-
quential algorithm can be performed with constant overhead.

Proof. From Lemma 1, we need only sample |VS | =
O(1) vertices from VU to estimate the offset index φ. The
sampling can be performed in constant time, and sorting and
selection is therefore also in constant time. Although updat-
ing the probabilities requires O(|VU |), the original varia-
tional inference algorithm required O(|VU |+ |E|) time, thus
our approach does not increase the order complexity.

The fact that the approximation only requires a constant
overhead makes it quite powerful for the sequential algo-
rithm and big data problems in general. In the next section,
we discuss parallelizing the method and prove that we retain
a constant overhead in this scenario as well.

5. INFERENCE ON LARGE SCALE DATA
In this section, we discuss our scalable approach to VMF

inference in parallel. This inference approach will allow us to
apply relational machine learning at a scale not previously
accomplished, and at the same time handle the MaxEntInf
correction necessary for PL-EM.

To start, assume we have a set of T cores, with shared
memory (or memory manager) syncing ỸU between the cores.
We propose solving the joint inference process through an
asynchronous and lock-free parallel VMF algorithm [2]. In
particular, the unlabeled data is split into T segments, which
are distributed amongst the T clients. Each client receives
its corresponding portion of unlabeled data Vt

U and is tasked
with updating the corresponding Q(Yt

U ) ⊆ Q(YU ). Along
the way, the client estimates its own φt, computing its own
offsets in the logit space, and calibrates its own MaxEntInf
correction to the portion of the unlabeled data it is assigned.
Each client uses the memory manager ỸU , which is up-
dated periodically with new label estimates as provided by
the other clients. After a client finishes updating its cor-
responding segment of data, it pushes the newly estimated
Qi(y) to the memory manager (maintaining ỸU ) for distri-
bution amongst the other clients. When updating Qi(y) on
a particular client, it is assumed that for every neighbor-
ing vj some form of Qj(y) exists in ỸU , although it may
not be the most recent update. As high degree vertices are
neighbors to most of the graph, synchronized updates would



require them to lock a large portion of the unlabeled esti-
mates, effectively shutting down the parallelism. By having
asynchronous updates we avoid these locking issues, result-
ing in a massively scalable algorithm.

The parallel MaxEntInf inference approach is described in
Algorithm 3. In Algorithm 3, the master devises a random
split of the unlabeled data points and creates the shared
memory (or memory manager) (Lines 1-2). Each client is
then spawned, given the portion of data it should infer, along
with the labeled data, the classifier and the memory man-
ager. After each client has finished, the master collects the
processes and returns the results (Line 6-9).

Line 4 calls Algorithm 2 for each processor. This algo-
rithm differs from the initial MaxEntInf by: (a) the process
only operates on a subset of the data and (b) the results after
calibration are pushed to the memory manager for the other
clients to use in their own inferences. Each client only cal-
ibrates on the subset of the data rather than the complete
dataset. This is a fundamental shift from the sequential
algorithm, where all instances are adjusted using the same
offset value. Thus, we need to understand the impact of this
approximation in comparison to the true correction.

Accuracy of Parallelizing MaxEntInf
Here we extend the notion of the constant sample size re-
quired to compute the correction (Lemma 1), to prove that
each processor can independently compute its own offset
without relying on other values. A natural extension to this
is that the MaxEntInf correction again only requires a con-
stant overhead to the parallel variational inference approach.

Let there be T threads, each thread t ∈ {1, · · · , T} receiv-
ing a portion of the data Vt

U . Without loss of generality,
assume all |Vt

U | are equal (if not, simply choose the small-
est). Then, we wish to bound the error ε with probability
1− δ, i.e.:

P
(
z(φt) ∈ z(φ±ε) ∀t ∈ {1, · · · , T}

)
≥ 1− δ

where φt = P (−)·|Vt
U | is the offset index for each subsample.

Theorem 1 (Parallel Sample Size).
Let V1

U , · · ·VT
U ⊆ VU be disjoint uniformly random subsets

of the unlabeled network vertices. Let φ be the true offset, ε
be the amount of error in the chosen index φt for each subset
T we will allow, and δ be the probability bound. If:

|Vt
U | ≥

√
1

2ε2
log

(
2T

δ

)
∀1, · · · , T

then ∀t∈{1, · · · , T} z(φt)∈z(φ±ε) with 1− δ probability.

Proof. We wish to bound the following quantity:

P
(
z(φt)∈z(φ±ε) ∀t∈{1, · · · , T}

)
≥ 1− δ

By the Union bound:

P
(
z(φt)∈z(φ±ε) ∀t∈{1, · · · , T}

)
≥1−

∑
t

P
(
z(φt) /∈z(φ±ε)

)
≥1− T · P

(
z
(φt′ ) /∈z(φ±ε)

)
where φt

′
is the offset index associated with the minimum

|Vt
U |. Then we have:

1− T · P
(
z(φt′ ) /∈ z(φ±ε)

)
≥1− δ

T · P
(
z(φt′ ) /∈ z(φ±ε)

)
≤δ

Applying Lemma 7 of [11] to P (φ′t /∈ φ± ε), we recover:

T · P
(
z(φt′ ) /∈ z(φ±ε)

)
≤δ

T · 2 exp{−2ε2|Vt′
U |2} ≤δ

|Vt′
U | ≥

√
1

2ε2
log

(
2T

δ

)

Thus if each subset has at least
√

1
2ε2

log
(

2T
δ

)
samples, then

z(φt)∈z(φ±ε) ∀t∈{1, · · · , T} with probability 1− δ.

This shows that the number of samples in each thread
must only reach a certain threshold in order to have the
desired accuracy, regardless of the total size of VU . Again
using ε = .05 and δ = .05, if we have 10 cores available each
core must only contain a minimum of 37 samples to achieve
the desired accuracy. Similarly, if we have 100 cores each
core must only contain 41 samples and for 1000 cores we
must only have 47 samples per core. For big data problems,
these thresholds are easy to achieve.

As with the sequential sampler, the parallel correction
only has a constant amount of overhead in comparison to
the uncorrected variational inference algorithm.

Corollary 2 (Parallel Constant Overhead).
Let V1

U , · · ·VT
U ⊆ VU be disjoint uniformly random subsets

of the unlabeled network vertices. For a specified ε and δ,
an approximation to the parallel algorithm proposed can be
performed with constant overhead.

Proof. From Theorem 1, we need only sample |VS | =
O(1) vertices from Vt

U to estimate the offset index φt. Again,
the sampling can be performed in constant time, sorting and
selection is therefore also in constant time, meaning that up-
dating the estimates is again done in O(|VU |+|E|) time.

6. EXPERIMENTS
In this section, we compare our proposed PL-EM frame-

work against a variety of competing state-of-the-art meth-
ods. We test each method on seven real world datasets,
three of which are an order of magnitude larger than any
known prior application of RML.

6.1 Models
To control for variation due to knowledge representation,

we compared models based on logistic regression, including
independent logistic regression and relational methods that
use logistic regression for the local conditional distribution in
collective classification. For the relational approaches, three
additional variables are incorporated into the conditional
distribution: the proportion of positive neighbors, the pro-
portion of negative neighbors, and the degree of the vertex.
The parameter learning is done via iteratively reweighted
least squares [4] where the least squares solution is solved
using the tall/skinny streaming QR matrix factorization [3].

Logistic Regression [LR]: This is the independent lo-
gistic regression model. It does not consider any relational
features, using only the vertex features to predict the label.

Logistic Regression EM [LR (EM)]: The independent
logistic regression approach coupled with EM.

Relational Logistic Regression [RLR]: Logistic re-
gression that incorporates relational features (positive pro-
portions, negative proportions and degree). This method



Dataset Nv Ne W ρ P (+)

Facebook 5,906 73,374 2 0.174 0.320
IMDB 7,934 122,230 28 0.207 0.164
DVD 16,118 75,596 28 0.208 0.210
Music 56,891 272,544 26 0.153 0.078

Comm. 881,187 5,302,712 50 0.710 0.059
Computers 881,187 5,302,712 50 0.815 0.169

Organic 881,187 5,302,712 50 0.486 0.021

Figure 3: Datasets compared. From left: dataset
name, number of vertices, number of edges, number
of attributes, label correlation, proportion positive.

does not perform EM and only the initial parameters are
used for prediction. Predictions are not made collectively.

Label Propagation [LP]: This is a standard algorithm
for inference in relational networks ([20, 10]). It does not
learn a dependence on attributes and relational information;
rather, the algorithm assumes high correlation and itera-
tively predicts label probabilities by averaging the current
estimates of the relational neighbors. This iterative process
repeats until convergence.

Composite Likelihood EM [CL-EM]: This is the tra-
ditional semi-supervised relational EM algorithm that max-
imizes the composite likelihood [18]. To allow for a com-
parison, we utilize our parallelized collective inference algo-
rithm for efficiency. However, this method does not uti-
lize the MaxEntInf correction proposed. It performs 10
rounds of variational inference for collective inference. As
CL-EM is known to be unstable [14], we smooth the pa-
rameters at each iteration t. More specifically, we estimate
Θt
C = αtΘ

new
C + (1 − αt)Θt−1

C where αt = exp{−0.125 · t}.
Further, for this method we report the average error between
10 and 11 rounds of EM.

Naive Pseudolikelihood EM [PL-EM (Naive)]: This
method naively applies a semi-supervised relational EM that
maximizes the pseudolikelihood rather than the composite
likelihood. We again implement our parallelized collective
inference algorithm for efficiency, but again omit the pro-
posed MaxEntInf correction. It performs 10 rounds of varia-
tional inference for collective inference and, since the PL-EM
is more stable than CL-EM, 10 rounds of EM.

MaxEntInf Pseudolikelihood EM [PL-EM (Max-
EntInf)]: This is our proposed semi-supervised relational
EM method that uses pseudolikelihood combined with the
MaxEntInf approach to correct for relational biases. As with
PL-EM (Naive), this method utilizes 10 rounds of variational
inference for collective inference, 10 rounds of EM, and max-
imizes the full PL. However, this approach utilizes our pro-
posed inference correction during each round of variational
inference.

6.2 Datasets
We compare each of the methods on seven real world net-

works, gathered from various sources. Each network only
includes vertices with degree greater than zero, and excludes
the rest. A full listing of the statistics are given in Figure 3.

Smaller Datasets
The first four datasets are small in comparison to the last
three. However, each provides a different type of network

on which to compare the algorithms; further, they provide
a means to evaluate scalability of our parallel inference.

Facebook: This is a snapshot of the Purdue University
Facebook network. We include users who have listed their
(a) political views, (b) religious views and (c) gender. The
resulting network contains 5,906 vertices and 73,394 edges.
We predict the political views, with the other two variables
as features, resulting in a label correlation of 0.174 and pos-
itive proportion 0.32. This positive proportion is the largest
observed in any dataset.

IMDB: This is a movie dataset release by the Internet
Movie Database (www.imdb.com). The task is to predict
whether a movie will have a gross revenue of $50 million
(or greater). As features, we utilize the 19 provided movie
genres: for each genre we define an indicator variable for
whether the movie falls into the associated genre (these are
not necessarily disjoint). In addition, we incorporate the
user rating of the movie through 9 boolean indicator vari-
ables: each variable indicates whether the average movie
rating is greater than the corresponding index. We connect
movies through their producers: two movies that share two
(or more) producers are linked. The resulting network has
7,934 vertices and 122,230 edges, with label correlation 0.207
and positive proportion 0.164.
DVD: This is a subset of the Amazon dataset gathered

by [8], with items in the DVD classification. The predic-
tion task is to determine whether an item has an Amazon
salesrank < 7500. The attributes are the associated 24 gen-
res that Amazon provides, as well as four boolean variables
indicating whether the average number of stars is greater
than the associated index. The edges are created through
DVD copurchases, with an edge indicating that Amazon be-
lieves two items are frequently purchased together. The re-
sulting network has 16,118 vertices and 75,596 edges, with
a label correlation of 0.208 and positive proportion 0.21.
Music: This is another subset of the Amazon dataset

gathered by [8], with items in the Music classification. As
before, the prediction task is to determine whether an item
has an Amazon salesrank < 7500. The attributes are the as-
sociated 22 styles of music that Amazon provides, as well as
four boolean variables indicating whether the average num-
ber of stars is greater than the associated index. The re-
sulting network has 56,891 vertices and 272,544 edges, with
a label correlation of 0.153 and positive proportion 0.078.
This is on the order of the largest datasets on which RML
methods have previously been applied.

Larger Datasets
Our large scale network datasets are constructed from the
publicly available NBER patents datasets (network struc-
ture [9], labelings [6]1). For every patent that was published
from 1990-2000, we queried the corresponding text from
http://patft.uspto.gov, stripping out the claims and de-
scription for each patent. We removed English stop words
[1] and took the top 50 most frequently occurring words.
We weighted each document’s words using TF-IDF [7], and
each document feature vector was length normalized. The
network has 881,187 vertices (patents) and 5,302,712 edges
(citations between patents). We constructed three different
classification tasks by considering the filing categories asso-
ciated with each patent [6].

1http://www.nber.org/patents/subcategories.txt

http://patft.uspto.gov
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Figure 4: Results on the four smaller datasets. PL-EM with MaxEntInf outperforms each method.
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Figure 5: IMDB: Distribution of predictions at vary-
ing labeled percentages. Note that at a high labeled
percentage RLR, CL-EM, and Naive PL-EM con-
tinue to be poorly calibrated.

Communications: In this task, we considered whether
patents were filed in “Primary Category 2, Subcategory 21”
or not. The patents in this category are communications
patents, involving computer communication infrastructure
and technologies. Since this is a subcategory, the label has
has considerable skew, with 0.059 positive proportion. How-
ever, label correlation is relatively high at 0.71.

Computers: In this task, we considered whether patents
were filed in “Primary Category 2” or not. The patents in
this category are related in some way to computers. Since
it is a relatively large category, the positive proportion in
0.169. It has extremely high label correlation of 0.815.

Organic: In this task, we considered whether patents
were filed in “Primary Category 1, Subcategory 14” or not.
This category comprises chemical patents that relate to or-
ganic compounds. This is the most skewed dataset, with a
positive proportion of 0.021. Label correlation is 0.486.

6.3 Methodology
For each dataset, we compare all methods. We repeat the

experiments 100 times for the smaller datasets and 20 times
for the larger datasets. Our error statistic is the Balanced
Absolute Error (BAE) and we report the mean of the trials.
The BAE measures the absolute error of a classifier C, but
normalizes the error across the classes:

errC(y) =

∑
vi∈VU

PC(yi 6= y)I[yi = y]∑
vi∈VU

I[yi = y]

BAEC =

∑
y∈Y errC(y)

|Y|

This measure averages the balanced accuracy for all un-
labeled instances. For the smaller datasets, we examine the
BAE across a range of labeling percentages (0.05-0.9), while
on the larger datasets we report accuracies on the more in-
teresting sparser labeling percentages (0.001-0.1). Note that
the extremely sparse labelings have only 880 instances out
of nearly 900,000 labeled. All tests are paired across the
various methods (i.e., each is given the same set of labeled
instances).

Our tests were performed on a MacPro with two 2.66GHz
6-Core Intel Xeon processors, capable of 24 possible hyper-
threads, with 48GB of RAM. The parallelized algorithms
utilized all possible hyper threads, except for during the
speedup tests.

6.4 Results
In Figure 4 we report the performance of the varying

methods as the percentage of labeled data increases for each
of the small datasets. In every instance, PL-EM with Max-
EntInf outperforms all of the competing methods. Further,
we find that vertex features alone are learned fairly accu-
rately from a low label percentage, with little improvement
as more data is gathered. This results in LR (EM) per-
forming on par with LR, and each of these methods are
outperformed by the relational methods as the proportion
of labeled data increases. By incorporating both relational
information and vertex information, RLR makes an initial
gain over LP by utilizing the vertex information, then con-
tinues to improve at the same rate as LP. These gains are
accentuated in the Amazon datasets, where the additional
degree information leads to considerable gain over LR and
LP. This is due to the salesrank of an item being heavily cor-
related to the degree (≈ −0.26) making the degree highly
predictive. For each of these smaller datasets, PL-EM with
MaxEntInf improves over the baselines.

We contrast the difference between the Naive PL-EM and
PL-EM with MaxEntInf. In particular, the Naive applica-
tion of PL-EM is nearly always outperformed by the more re-
strictive CL-EM, particularly for sparsely labeled domains.
PL-EM (MaxEntInf) also slightly outperforms PL-EM
(Naive) even at higher label percentages. This is due to
Naive PL-EM continuing not to calibrate at the higher label
percentages. We illustrate this in Figure 5. At the lower
label percentage, Naive PL-EM strays far from the prior, as
expected, while PL-EM (MaxEntInf) goes through the cor-
rect point. For the higher label percentage, PL-EM (Naive)
has improved its estimates, but remains further from the
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Figure 6: (a-c) Performance across each of the large scale datasets. (d) Speedup as we vary the number of
processors available for each of the small datasets.

Percentage Labeled No Correction Correction

0.001 16.184 18.042
0.005 16.479 18.300
0.01 15.826 18.221
0.05 15.458 17.374
0.1 14.790 16.342
0.25 12.068 13.842

Figure 7: Total inference times on the large scale
datasets (seconds).

correct prior than PL-EM (MaxEntInf). Thus, calibrating
alone can decrease the error rate.

Next, Figures 6.a-c report performance results for the
large scale datasets. PL-EM (MaxEntInf) produces signif-
icant performance improvements over the competing meth-
ods, with a substantial decrease in error. The effectiveness
of LP largely depends on the dataset—as Communication
and Computers have considerably more label correlation, LP
performs the best on these datasets. Similarly, the attributes
are largely ineffective on the Communication dataset, but
helpful on both Computers and Organic. Thus, the RML
methods perform best on Computers, with PL-EM (Max-
EntInf) having an error of less than 0.1 with only 1/100 data
points labeled. Again, PL-EM (Naive) is largely outper-
formed by CL-EM, but our correction allows the additional
information provided by the pseudolikelihood to greatly im-
prove the accuracy.

Figure 6.d examines the effect of parallelizing the inference
algorithm on each of the smaller datasets. As expected, the
algorithm scales at a linear rate. There are two slight ir-
regularities in the curve. First, the algorithm appears to
increase faster than linear up to 8 cores. This is an artifact
of spawning the threads—these datasets are rather small,
meaning the thread creation has a noticeable impact on the
runtime. Second, after 8 cores the algorithm does not con-
tinue its rate and appears to slow. This is due to our ma-
chine only having 12 true cores, requiring the 16 thread test
to utilize the hyper threads. Although we continue gaining,
this hardware implementation has an impact on the gains.

Lastly, Figure 7 reports the total inference time (in sec-
onds for each E-Step) for the large scale datasets with vary-
ing amounts of data. We provide the runtimes both with
and without the MaxEntInf correction. Notably, the re-
sults show that we can solve the inference step with nearly
900,000 unlabeled documents, over 10 rounds of variational

inference, within 20 seconds. This shows that the collec-
tive inference necessary for relational machine learning is no
longer a significant burden.

6.5 Relational Summarization
As stated in the introduction, having more accurate prob-

ability estimates allows us to improve on a variety of tasks
outside of simple prediction. So, we additionally compare
on the alternative problem of relational summarization. For
this we measure the Friend BAE, a measure that balances
the error of individuals’ friends for making predictions:

ferrC(y, vi) =
∑

vj∈{MB(vi)∩VU}
PC(yj 6= y)I[yj = y]

FriendBAEC(y) =

∑
vi∈V

∑
y∈Y errC(y)∑

vi∈V
∑
vj∈{MB(vi)∩VU} I[yj = y]

FriendBAEC =

∑
y∈Y FriendBAEC(y)

|Y|

These results are reported in Figure 8 on the DVD and
Music datasets from Amazon, as well as the Communication
and Computers large scale datasets. As with the original
BAE, PL-EM with MaxEntInf outperforms all competing
methods. Interestingly, PL-EM performs considerably bet-
ter in the space on the DVD and Music datasets. This im-
plies that Amazon generally has high degree instances con-
nect with other high degree instances, making the prediction
task easier due to the degree variable. In contrast, such ef-
fect does not occur in the Patents dataset, implying that
the error is largely dispersed independent of degree. Over-
all, the PL-EM with MaxEntInf is able to outperform other
estimators on a variety of tasks.

7. RELATED WORK AND DISCUSSION
Our work advances the field of relational machine learn-

ing (RML) [5] in two notable directions. First, we demon-
strated that the error from the pseudolikelihood maximiza-
tion learning approximation can be overcome by correcting
the inference step of the algorithm. This approach allows
any relational conditional distribution to be corrected on
the fly solely by a small correction to the inference step, as
well as allowing for the more general PL-EM algorithm to be
used in conjunction with the chosen conditional. Second, we
demonstrated that by using asynchronous variational mean
field inference we can trivially parallelize the joint inference
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Figure 8: (a-d) Performance of methods on the Relational Summarization task, for the DVD, Music, Com-
munication and Computers datasets.

algorithm, allowing for fast computations of the unlabeled
probabilities. As part of this, we demonstrated that we can
also parallelize the correction and we provided bounds on the
error from this parallelization. The correction itself is simi-
lar to one proposed by [17] for IID EM learning, although we
propose applying it in a considerably different domain and
demonstrate it overcoming extreme inference biases. We also
provided the error bounds for the sampled approach, proofs
for the constant sampling overhead and demonstrated suc-
cess in parallelizing the subsamples on large domains.

Seminal related work centers around relational Markov
networks (RMNs) [16] and their first-order logic generaliza-
tion Markov logic networks (MLNs) [15]. Both formalisms
lie within the exponential family, meaning optimizing their
corresponding MLEs will maximize their entropies. How-
ever, for large scale and complex network data these are
also typically learned by maximizing the pseudolikelihood.
The MPLE approximation provably over-propagates error
for RMNs [19], similar to the extreme prediction biases ob-
served in this work for the logistic regression conditionals.
Hence, parameters learned from RMNs or MLNs likely suf-
fer similar problems as the logistic regression formulation.
This raises interesting theoretical questions on what charac-
teristics a conditional form must have in order to avoid the
over propagation error, which we leave for future work.

The most related work to ours is that of McDowell & Aha
[12]. Their work first noted the differences between learning
from the labeled vertices and the full network during the ‘M’-
step. However, their solution required the use of a special
regularizer during the optimization step, and made use of
a specific form of conditional. In contrast, our work pairs
with any black box conditional distribution that provides
label probabilities. Further, we demonstrated the power of
parallelizing our inference step, allowing for our correction
and inference method to scale to data orders of magnitude
above previous relational algorithms.

Lastly, recent work on stochastic variants of the CL-EM
algorithm has produced methods for relational stochastic
EM and relational data augmentation [14]. These methods
aggregate over a range of possible parameter values, result-
ing in significantly more stable estimates. However, each of
these methods requires a maximization after a single round
of Gibbs sampling. In [14], the authors proposed 1000 max-
imizations. In contrast, our MaxEntInf approach requires
only 10 maximizations, and our estimation considers the full
pseudolikelihood case. Coupled with our parallel algorithm,
our approach is both more efficient and more general.

8. CONCLUSIONS
In this work, we proposed a novel maximum entropy con-

straint for inference during RML. Implementing this con-
straint is straightforward, allowing it to be used in conjunc-
tion with any relational learner. We proved the method
has a constant overhead, making it ideally suited for big
data problems. Additionally, we applied asynchronous vari-
ational mean field algorithms with success to relational infer-
ence problems. The maximum entropy inference correction
is also ideally suited for this parallel implementation; as with
the sequential case, we proved that it can be implemented
with constant overhead. We demonstrated our approach on
7 real world network domains, showing that it outperformed
a variety of baselines and competing methods. Further, we
showed our parallel corrected inference procedure can be
performed in under 20 seconds on networks with more than
five million edges—an order of magnitude larger than prior
works.

The methods presented here open multiple avenues for
future work. First, the sampling approximation proofs are
not limited to providing estimates on a per core basis: in
many real world dataset we may wish to partition our data
to reduce traffic overhead across the links while preserving
an unbiased corrective estimate. However, these partitions
may naturally introduce a bias on each core (e.g., geographic
partitions). The included proofs provide evidence that the
inference correction needs only a constant overhead between
the cores, potentially greatly reducing the latency between
the servers. Second, the proposed maximum entropy infer-
ence correction provides encouraging evidence that correc-
tive inference methods can significantly improve relational
machine learning methods, but is currently limited to the bi-
nary classification case. This approach should be expanded
to include a larger number of possible label values. Third,
these results raise interesting questions for which forms of
conditionals are prone to bias and over propagation error ef-
fects. More theoretical work is necessary to determine when
a relational classier might suffer from this bias and whether
there are classifiers that are robust to these errors.
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